30 research outputs found

    Structural and Antiferromagnetic Properties of Ba(Fe1−x−yCoxRhy)2As2 compounds

    Get PDF
    We present a systematic investigation of the electrical, structural, and antiferromagnetic properties for the series of Ba(Fe1 −x−yCoxRhy)2As2 compounds with fixed x ≈ 0.027 and 0 ≤ y ≤ 0.035. We compare our results for the Co-Rh doped Ba(Fe1−x−yCoxRhy)2As2 compounds with the Co doped Ba(Fe1−xCox)2As2 compounds. We demonstrate that the electrical, structural, antiferromagnetic, and superconducting properties of the Co-Rh doped compounds are similar to the properties of the Co doped compounds. We find that the overall behaviors of Ba(Fe1−x−yCoxRhy)2As2 and Ba(Fe1−xCox)2As2 compounds are very similar when the total number of extra electrons per Fe/TM (TM=transition metal) site is considered, which is consistent with the rigid band model. Despite the similarity, we find that the details of the transitions, for example, the temperature difference between the structural and antiferromagnetic transition temperatures and the incommensurability of the antiferromangetic peaks, are different between Ba(Fe1−x−yCoxRhy)2As2 and Ba(Fe1−xCox)2As2 compounds

    Early Onset of Franciscan Subduction

    Get PDF
    The Franciscan subduction complex of California is considered a type example of a subduction-accretion system, yet the age of subduction initiation and relationship to the tectonic history of western North America remain controversial. Estimates for the timing of Franciscan subduction initiation are largely based either indirectly on regional tectonic arguments or from the ages of high-grade blocks within mélange. Many of the high-grade blocks record counterclockwise pressure-temperature paths with early amphibolite overprinted by later eclogite and blueschist; however, their origin and significance with respect to subduction initiation have been debated. In contrast, some high-grade blocks show evidence for clockwise pressure-temperature paths and an early eclogite assemblage overprinted by later amphibolite Zircon U-Pb ages from inclusions in garnet and Lu-Hf estimates of initial garnet growth ages from these samples record early eclogite metamorphism at ~176 Ma. Matrix zircon U-Pb ages and Lu-Hf estimates of final garnet growth ages record a barroisite-amphibolite assemblage overprint of eclogite at ~160 Ma. Combined with petrologic data and existing geochronology, the data suggest that (1) Franciscan subduction was underway by no later than 180 Ma, (2) continuous subduction metamorphism occurred for at least 100 Ma, and (3) Franciscan subduction initiation predated the formation of the overlying Coast Range Ophiolite, supporting models that form the ophiolite above an east dipping Franciscan subduction zone

    Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete

    Get PDF
    Pozzolanic reaction of volcanic ash with hydrated lime is thought to dominate the cementing fabric and durability of 2000-year-old Roman harbor concrete. Pliny the Elder, however, in first century CE emphasized rock-like cementitious processes involving volcanic ash (pulvis) “that as soon as it comes into contact with the waves of the sea and is submerged becomes a single stone mass (fierem unum lapidem), impregnable to the waves and every day stronger” (Naturalis Historia 35.166). Pozzolanic crystallization of Al-tobermorite, a rare, hydrothermal, calcium-silicate-hydrate mineral with cation exchange capabilities, has been previously recognized in relict lime clasts of the concrete. Synchrotron-based X-ray microdiffraction maps of cementitious microstructures in Baianus Sinus and Portus Neronis submarine breakwaters and a Portus Cosanus subaerial pier now reveal that Al-tobermorite also occurs in the leached perimeters of feldspar fragments, zeolitized pumice vesicles, and in situ phillipsite fabrics in relict pores. Production of alkaline pore fluids through dissolution-precipitation, cation-exchange and/or carbonation reactions with Campi Flegrei ash components, similar to processes in altered trachytic and basaltic tuffs, created multiple pathways to post-pozzolanic phillipsite and Al-tobermorite crystallization at ambient seawater and surface temperatures. Long-term chemical resilience of the concrete evidently relied on water-rock interactions, as Pliny the Elder inferred. Raman spectroscopic analyses of Baianus Sinus Al-tobermorite in diverse microstructural environments indicate a cross-linked structure with Al3+ substitution for Si4+ in Q3 tetrahedral sites, and suggest coupled [Al3++Na+ ] substitution and potential for cation exchange. The mineral fabrics provide a geoarchaeological prototype for developing cementitious processes through low-temperature rock-fluid interactions, subsequent to an initial phase of reaction with lime that defines the activity of natural pozzolans. These processes have relevance to carbonation reactions in storage reservoirs for CO2 in pyroclastic rocks, production of alkali-activated mineral cements in maritime concretes, and regenerative cementitious resilience in waste encapsulations using natural volcanic pozzolans

    Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete

    Get PDF
    Pozzolanic reaction of volcanic ash with hydrated lime is thought to dominate the cementing fabric and durability of 2000-year-old Roman harbor concrete. Pliny the Elder, however, in first century CE emphasized rock-like cementitious processes involving volcanic ash (pulvis) “that as soon as it comes into contact with the waves of the sea and is submerged becomes a single stone mass (fierem unum lapidem), impregnable to the waves and every day stronger” (Naturalis Historia 35.166). Pozzolanic crystallization of Al-tobermorite, a rare, hydrothermal, calcium-silicate-hydrate mineral with cation exchange capabilities, has been previously recognized in relict lime clasts of the concrete. Synchrotron-based X-ray microdiffraction maps of cementitious microstructures in Baianus Sinus and Portus Neronis submarine breakwaters and a Portus Cosanus subaerial pier now reveal that Al-tobermorite also occurs in the leached perimeters of feldspar fragments, zeolitized pumice vesicles, and in situ phillipsite fabrics in relict pores. Production of alkaline pore fluids through dissolution-precipitation, cation-exchange and/or carbonation reactions with Campi Flegrei ash components, similar to processes in altered trachytic and basaltic tuffs, created multiple pathways to post-pozzolanic phillipsite and Al-tobermorite crystallization at ambient seawater and surface temperatures. Long-term chemical resilience of the concrete evidently relied on water-rock interactions, as Pliny the Elder inferred. Raman spectroscopic analyses of Baianus Sinus Al-tobermorite in diverse microstructural environments indicate a cross-linked structure with Al3+ substitution for Si4+ in Q3 tetrahedral sites, and suggest coupled [Al3++Na+ ] substitution and potential for cation exchange. The mineral fabrics provide a geoarchaeological prototype for developing cementitious processes through low-temperature rock-fluid interactions, subsequent to an initial phase of reaction with lime that defines the activity of natural pozzolans. These processes have relevance to carbonation reactions in storage reservoirs for CO2 in pyroclastic rocks, production of alkali-activated mineral cements in maritime concretes, and regenerative cementitious resilience in waste encapsulations using natural volcanic pozzolans

    Subduction Initiation and Early Evolution of the Easton Metamorphic Suite, Northwest Cascades, Washington

    Get PDF
    The Easton metamorphic suite, in the northwest Cascades of Washington State, preserves an inverted metamorphic sequence with ultramafic rocks underlain by amphibolite and high-temperature blueschist juxtaposed above low-temperature blueschists. The sequence is interpreted as a metamorphic sole and younger accreted rocks that formed during and after the initiation of Farallon plate subduction beneath North America in Jurassic time. Two high-temperature deformation events are recorded in the metamorphic sole at ∼10 kbar and ∼760 °C to 590 °C between \u3e167 and 164 Ma. High-temperature blueschist partly overprints the amphibolite but may have accreted separately at ∼530 °C between ca. 165 and 163 Ma. Retrograde metamorphism and post-tectonic white mica record cooling of the metamorphic sole to ∼350 °C by ca. 160 Ma. Subsequent underplating of the Darrington Phyllite occurred at ∼7 kbar and ∼320 °C prior to ca. 148 Ma until at least ca. 142 Ma. Blueschist-facies conditions and exhumation to ∼5 kbar occurred between ca. 140 and 136 Ma during later accretion and deformation of Shuksan greenschist-blueschist. Cooling ages from the high-temperature metamorphic sole require that subduction began prior to 167 Ma, before or during the formation of ophiolite-related rocks within the Northwest Cascades thrust system. Rapid cooling of the metamorphic sole below 400 °C until ca. 157 Ma through combined thermal relaxation of the subduction zone and partial exhumation was followed by at least 26 m.y. of a steady thermal state as younger units were accreted and exhumed. The record of high-pressure–low-temperature metamorphism suggests that the Easton metamorphic suite formed in a large ocean basin rather than an arc-proximal marginal basin. The metamorphic history also argues against previously suggested correlations of the Easton metamorphic suite with units of the Franciscan complex to the south in California. The temperature-time history of the Easton suite is consistent with models for the early evolution of subduction zones

    Crustal shortening, exhumation, and strain localization in a collisional orogen: the Bajo Pequeño Shear Zone, Sierra de Pie de Palo, Argentina

    Get PDF
    The Bajo Pequeño Shear Zone (BPSZ) is a lower-crustal shear zone that records shortening and exhumation associated with the establishment of a new plate boundary, and its placement in a regional structural context suggests that local- to regional-scale strain localization occurred with progressive deformation. A kilometer-scale field and analytical cross section through the ~80 m thick BPSZ and its adjacent rocks indicates an early Devonian (405–400 Ma) phase of deformation on the western margin of Gondwanan continental crust. The earliest stages of the BPSZ, recorded by metamorphic and microstructural data, involved thrusting of a hotter orthogneiss over a relatively cool pelitic unit, which resulted in footwall garnet growth and reset footwall white mica 40Ar/39Ar ages in proximity to the shear zone. Later stages of BPSZ activity, as recorded by additional microstructures and quartz c-axis opening angles, were characterized by strain localization to the center of the shear zone coincident with cooling and exhumation. These and other data suggest that significant regional tectonism persisted in the Famatinian orogenic system for 60–70 million years after one microplate collision (the Precordillera) but ceased 5–10 million years prior to another (Chilenia). A survey of other synchronous structures shows that strain was accommodated on progressively narrower structures with time, indicating a regional pattern of strain localization and broad thermal relaxation as the Precordillera collision evolved.Fil: Garber, Joshua M.. University of California at Davis; Estados UnidosFil: Roeske, Sarah M.. University of California at Davis; Estados UnidosFil: Warren, Jessica. University of Stanford; Estados UnidosFil: Mulcahy, Sean R.. University of California at Berkeley; Estados UnidosFil: McClelland, William C.. University of Iowa; Estados UnidosFil: Austin, Lauren J.. University of Oregon; Estados UnidosFil: Renne, Paul R.. University of California at Berkeley; Estados UnidosFil: Vujovich, Graciela Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología. Laboratorio de Tectónica Andina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Structural Evolution of a Composite Middle to Lower Crustal Section: The Sierra de Pie de Palo, Northwest Argentina

    Get PDF
    The Sierra de Pie de Palo of northwest Argentina preserves middle to lower crustal metamorphic rocks that were penetratively deformed during Ordovician accretion of the Precordillera terrane to the Gondwana margin. New structural, petrologic, and geochronologic data from a 40 km structural transect reveals that the Sierra de Pie de Palo preserves a middle to lower crustal ductile thrust complex consisting of individual structural units and not an intact ophiolite and cover sequence. Top-to-the-west thrusting occurred intermittently on discrete ductile shear zones from ∼515 to ∼417 Ma and generally propagated toward the foreland with progressive deformation. Ordovician crustal shortening and peak metamorphic temperatures in the central portion of the Sierra de Pie de Palo were synchronous with retro-arc shortening and magmatic flare-up within the Famatina arc. Accretion of the Precordillera terrane resulted in the end of arc flare-up and the onset of synconvergent extension by ∼439 Ma. Continued synextensional to postextensional convergence was accommodated along progressively lower grade shear zones following terrane accretion and the establishment of a new plate margin west of the Precordillera terrane. The results support models of Cordilleran orogens that link voluminous arc magmatism to periods of regional shortening. The deformation, metamorphic, and magmatic history within the Sierra de Pie de Palo is consistent with models placing the region adjacent to the Famatina margin in the middle Cambrian and not as basement to the Precordillera terrane

    Crustal Shortening, Exhumation, and Strain Localization in a Collisonal Orogen: the Bajo Pequeno Shear Zone, Sierra de Pie de Palo, Argentina

    Get PDF
    The Bajo Pequeño Shear Zone (BPSZ) is a lower-crustal shear zone that records shortening and exhumation associated with the establishment of a new plate boundary, and its placement in a regional structural context suggests that local- to regional-scale strain localization occurred with progressive deformation. A kilometer-scale field and analytical cross section through the ~80 m thick BPSZ and its adjacent rocks indicates an early Devonian (405–400 Ma) phase of deformation on the western margin of Gondwanan continental crust. The earliest stages of the BPSZ, recorded by metamorphic and microstructural data, involved thrusting of a hotter orthogneiss over a relatively cool pelitic unit, which resulted in footwall garnet growth and reset footwall white mica 40Ar/39Ar ages in proximity to the shear zone. Later stages of BPSZ activity, as recorded by additional microstructures and quartz c-axis opening angles, were characterized by strain localization to the center of the shear zone coincident with cooling and exhumation. These and other data suggest that significant regional tectonism persisted in the Famatinian orogenic system for 60–70 million years after one microplate collision (the Precordillera) but ceased 5–10 million years prior to another (Chilenia). A survey of other synchronous structures shows that strain was accommodated on progressively narrower structures with time, indicating a regional pattern of strain localization and broad thermal relaxation as the Precordillera collision evolved

    Unlocking the Secrets of Al-tobermorite in Roman Seawater Concrete

    Get PDF
    Ancient Roman syntheses of Al-tobermorite in a 2000-year-old concrete block submerged in the Bay of Pozzuoli (Baianus Sinus), near Naples, have unique aluminum-rich and silica-poor compositions relative to hydrothermal geological occurrences. In relict lime clasts, the crystals have calcium contents that are similar to ideal tobermorite, 33 to 35 wt%, but the low-silica contents, 39 to 40 wt%, reflect Al3+ substitution for Si4+ in Q2 (1Al), Q3 (1Al), and Q3 (2 Al) tetrahedral chain and branching sites. The Al-tobermorite has a double silicate chain structure with long chain lengths in the b [020] crystallographic direction, and wide interlayer spacing, 11.49 Å. Na+ and K+ partially balance Al3+ substitution for Si4+. Poorly crystalline calcium-aluminum-silicate-hydrate (C-A-S-H) cementitious binder in the dissolved perimeter of relict lime clasts has Ca/(Si+Al) = 0.79, nearly identical to the Al-tobermorite, but nanoscale heterogeneities with aluminum in both tetrahedral and octahedral coordination. The concrete is about 45 vol% glassy zeolitic tuff and 55 vol% hydrated lime-volcanic ash mortar; lime formed wt% of the mix. Trace element studies confirm that the pyroclastic rock comes from Flegrean Fields volcanic district, as described in ancient Roman texts. An adiabatic thermal model of the 10 m2 by 5.7 m thick Baianus Sinus breakwater from heat evolved through hydration of lime and formation of C-A-S-H suggests maximum temperatures of 85 to 97 °C. Cooling to seawater temperatures occurred in two years. These elevated temperatures and the mineralizing effects of seawater and alkali- and alumina-rich volcanic ash appear to be critical to Al-tobermorite crystallization. The long-term stability of the Al-tobermorite provides a valuable context to improve future syntheses in innovative concretes with advanced properties using volcanic pozzolans

    Metamorphism of the Sierra de Maz and implications for the tectonic evolution of the MARA terrane

    Get PDF
    The Mesoproterozoic MARA terrane of western South America is a composite igneous-metamorphic complex that is important for Paleozoic paleogeographic reconstructions and the relative positions of Laurentia and Gondwana. The magmatic and detrital records of the MARA terrane are consistent with a Laurentian origin; however, the metamorphic and deformation records lack sufficient detail to constrain the correlation of units within the MARA terrane and the timing and mechanisms of accretion to the Gondwana margin. Combined regional mapping, metamorphic petrology, and garnet and monazite geochronology from the Sierra de Maz of northwest Argentina suggest that the region preserves four distinct litho-tectonic units of varying age and metamorphic conditions that are separated by middle- to lower-crustal ductile shear zones. The Zaino and Maz Complexes preserve Barrovian metamorphism and ages that are distinct from other units within the region. The Zaino and Maz Complexes both record metamorphism ca. 430–410 Ma and show no evidence of the regional Famatinian orogeny (ca. 490–455 Ma). In addition, the Maz Complex records an earlier granulite facies event at ca. 1.2 Ga. The Taco and Ramaditas Complexes, in contrast, experienced medium- and low-pressure upper amphibolite to granulite facies metamorphism, respectively, between ca. 470–460 Ma and were later deformed at ca. 440–420 Ma. The Maz shear zone that bounds the Zaino and Maz Complexes records sinistral oblique to sinistral deformation between ca. 430–410 Ma. The data suggest that at least some units in the MARA terrane were accreted by translation, and the Gondwana margin of northwest Argentina transitioned from a dominantly convergent margin to a highly oblique margin in the Silurian
    corecore