52 research outputs found

    Mitochondrial Quality Control: Decommissioning Power Plants in Neurodegenerative Diseases

    Get PDF
    The cell has an intricate quality control system to protect its mitochondria from oxidative stress. This surveillance system is multi-tiered and comprises molecules that are present inside the mitochondria, in the cytosol, and in other organelles like the nucleus and endoplasmic reticulum. These molecules cross talk with each other and protect the mitochondria from oxidative stress. Oxidative stress is a fundamental part of early disease pathogenesis of neurodegenerative diseases. These disorders also damage the cellular quality control machinery that protects the cell against oxidative stress. This exacerbates the oxidative damage and causes extensive neuronal cell death that is characteristic of neurodegeneration

    Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies

    Get PDF
    Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle

    Photophysics of a neurotransmitter: ionization and spectroscopic properties of serotonin.

    Get PDF
    The neurotransmitter serotonin plays a modulatory role in the regulation of various cognitive and behavioral functions such as sleep, mood, pain, depression, anxiety, and learning by binding to a number of serotonin receptors present upon the cell surface. The spectroscopic properties of serotonin and their modulation with ionization state have been studied. Results show that serotonin fluorescence, as measured by its intensity, emission maximum, and lifetime, is pH dependent. These results are further supported by absorbance changes that show very similar pH dependence. Changes in fluorescence intensity and absorbance as a function of pH are consistent with a pK(a) of 10.4 +/- 0.2. The ligand-binding site for serotonin receptors is believed to be located in one of the transmembrane domains of the receptors. To develop a basis for monitoring the binding of serotonin to its receptors, its fluorescence in nonpolar media has been studied. No significant binding or partitioning of serotonin to membranes under physiological conditions was observed. Serotonin fluorescence in solvents of lower polarity is characterized by an enhancement in intensity and a blue shift in emission maximum, although the solvatochromism is much less pronounced than in tryptophan. In view of the multiple roles played by the serotonergic systems in the central and peripheral nervous systems, these results are relevant to future studies of serotonin and its binding to its receptors

    MAHOGUNIN MEDIATED REGULATION OF Gαi LOCALISATION DURING MITOSIS AND ITS EFFECT ON SPINDLE POSITIONING

    No full text
    Mahogunin RING Finger 1 (MGRN1) is a ubiquitin E3 ligase known to affect spindle tilt in mitotic cells by regulating α-tubulin ubiquitination and polymerization. In cell culture systems we have found that expressing truncated mutants of MGRN1 lead to various other mitotic anomalies, like lateral and angular spindle displacements. This seems independent of the MGRN1 ligase activity. Our experiments suggest that MGRN1 regulates the balance between the lower molecular weight monomeric Gαi and larger trimeric G-protein complex, along with its abundance in the ternary complex that regulates spindle positioning. The cytosolic isoforms of MGRN1 lead to the enrichment of monomeric Gαi in the cytosol and its subsequent recruitment at the plasma membrane. Excess of Gαi at the cell cortex results in an imbalance in the assembly of the ternary complex regulating spindle positioning during mitosis. These observations seem independent of the ligase activity of MGRN1 though we cannot negate the involvement of an intermediate player which acts as a substrate for MGRN1 and in turn, regulates Gαi.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Ionization, partitioning, and dynamics of tryptophan octyl ester: implications for membrane-bound tryptophan residues.

    Get PDF
    The presence of tryptophan residues as intrinsic fluorophores in most proteins makes them an obvious choice for fluorescence spectroscopic analyses of such proteins. Membrane proteins have been reported to have a significantly higher tryptophan content than soluble proteins. The role of tryptophan residues in the structure and function of membrane proteins has attracted a lot of attention. Tryptophan residues in membrane proteins and peptides are believed to be distributed asymmetrically toward the interfacial region. Tryptophan octyl ester (TOE) is an important model for membrane-bound tryptophan residues. We have characterized this molecule as a fluorescent membrane probe in terms of its ionization, partitioning, and motional characteristics in unilamellar vesicles of dioleoylphosphatidylcholine. The ionization property of this molecule in model membranes has been studied by utilizing its pH-dependent fluorescence characteristics. Analysis of pH-dependent fluorescence intensity and emission maximum shows that deprotonation of the alpha-amino group of TOE occurs with an apparent pKa of approximately 7.5 in the membrane. The fluorescence lifetime of membrane-bound TOE also shows pH dependence. The fluorescence lifetimes of TOE have been interpreted by using the rotamer model for the fluorescence decay of tryptophan. Membrane/water partition coefficients of TOE were measured in both its protonated and deprotonated forms. No appreciable difference was found in its partitioning behavior with ionization. Analysis of fluorescence polarization of TOE as a function of pH showed that there is a decrease in polarization with increasing pH, implying more rotational freedom on deprotonation. This is further supported by pH-dependent red edge excitation shift and the apparent rotational correlation time of membrane-bound TOE. TOE should prove useful in monitoring the organization and dynamics of tryptophan residues incorporated into membranes

    Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection

    No full text
    SidE family of Legionella effectors catalyze non-canonical phosphoribosyl-linked ubiquitination (PR-ubiquitination) of host proteins during bacterial infection. SdeA localizes predominantly to ER and partially to the Golgi apparatus, and mediates serine ubiquitination of multiple ER and Golgi proteins. Here we show that SdeA causes disruption of Golgi integrity due to its ubiquitin ligase activity. The Golgi linking proteins GRASP55 and GRASP65 are PR-ubiquitinated on multiple serine residues, thus preventing their ability to cluster and form oligomeric structures. In addition, we found that the functional consequence of Golgi disruption is not linked to the recruitment of Golgi membranes to the growing Legionella-containing vacuoles. Instead, it affects the host secretory pathway. Taken together, our study sheds light on the Golgi manipulation strategy by which Legionella hijacks the secretory pathway and promotes bacterial infection
    corecore