13 research outputs found

    Inflation with a Weyl term, or ghosts at work

    Full text link
    In order to assess the role of ghosts in cosmology, we study the evolution of linear cosmological perturbations during inflation when a Weyl term is added to the action. Our main result is that vector perturbations can no longer be ignored and that scalar modes diverge in the newtonian gauge but remain bounded in the comoving slicing.Comment: 14 pages, 4 figure

    Cosmological perturbations in FRW model with scalar field within Hamilton-Jacobi formalism and symplectic projector method

    Full text link
    The Hamilton-Jacobi analysis is applied to the dynamics of the scalar fluctuations about the Friedmann-Robertson-Walker (FRW). The gauge conditions are found from the consistency conditions. The physical degrees of freedom of the model are obtain by symplectic projector method. The role of the linearly dependent Hamiltonians and the gauge variables in Hamilton-Jacobi formalism is discussed.Comment: 11 page

    Looking Beyond Inflationary Cosmology

    Full text link
    In spite of the phenomenological successes of the inflationary universe scenario, the current realizations of inflation making use of scalar fields lead to serious conceptual problems which are reviewed in this lecture. String theory may provide an avenue towards addressing these problems. One particular approach to combining string theory and cosmology is String Gas Cosmology. The basic principles of this approach are summarized.Comment: invited talk at "Theory Canada 1" (Univ. of British Columbia, Vancouver, Canada, June 2 - 4, 2005) (references updated

    New Classes of Off-Diagonal Cosmological Solutions in Einstein Gravity

    Full text link
    In this work, we apply the anholonomic deformation method for constructing new classes of anisotropic cosmological solutions in Einstein gravity and/or generalizations with nonholonomic variables. There are analyzed four types of, in general, inhomogeneous metrics, defined with respect to anholonomic frames and their main geometric properties. Such spacetimes contain as particular cases certain conformal and/or frame transforms of the well known Friedman-Robertson-Walker, Bianchi, Kasner and Godel universes and define a great variety of cosmological models with generic off-diagonal metrics, local anisotropy and inhomogeneity. It is shown that certain nonholonomic gravitational configurations may mimic de Sitter like inflation scenaria and different anisotropic modifications without satisfying any classical false-vacuum equation of state. Finally, we speculate on perspectives when such off-diagonal solutions can be related to dark energy and dark matter problems in modern cosmology.Comment: latex2e, 11pt, 33 pages with table of content, a variant accepted to IJT

    Experimental study and critical review of structural, thermodynamic and mechanical properties of superhard refractory boron suboxide, B6O

    Full text link
    In the present paper we performed the analysis of available data on structural, thermodynamic and mechanical properties of B6O. Although the compound is known for half a century and has been extensively studied, many properties of this boron-rich solid remain unknown or doubtful. Semi-empirical analysis of our experimental and literature data allowed us to choose the best values of main thermodynamic and mechanical characteristics among previously reported data, to predict the thermoelastic equation of state of B6O, and dependence of its hardness on non-stoichiometry and temperature

    Metric Perturbations in Dilaton-Driven Inflation

    Get PDF
    We compute the spectrum of scalar and tensor metric perturbations generated, as amplified vacuum fluctuations, during an epoch of dilaton-driven inflation of the type occurring naturally in string cosmology. In the tensor case the computation is straightforward while, in the scalar case, it is made delicate by the appearance of a growing mode in the familiar longitudinal gauge. In spite of this, a reliable perturbative calculation of perturbations far outside the horizon can be performed by resorting either to appropriate gauge invariant variables, or to a new coordinate system in which the growing mode can be "gauged down". The simple outcome of this complicated analysis is that both scalar and tensor perturbations exhibit nearly Planckian spectra, whose common "temperature" is related to some very basic parameters of the string-cosmology background.Comment: 34 pages, latex, no figure

    Multiple Inflation, Cosmic String Networks and the String Landscape

    Full text link
    Motivated by the string landscape we examine scenarios for which inflation is a two-step process, with a comparatively short inflationary epoch near the string scale and a longer period at a much lower energy (like the TeV scale). We quantify the number of ee-foldings of inflation which are required to yield successful inflation within this picture. The constraints are very sensitive to the equation of state during the epoch between the two inflationary periods, as the extra-horizon modes can come back inside the horizon and become reprocessed. We find that the number of ee-foldings during the first inflationary epoch can be as small as 12, but only if the inter-inflationary period is dominated by a network of cosmic strings (such as might be produced if the initial inflationary period is due to the brane-antibrane mechanism). In this case a further 20 ee-foldings of inflation would be required at lower energies to solve the late universe's flatness and horizon problems.Comment: 27 pages, 6 figures; v2: refences adde

    Scalar perturbations in conformal rolling scenario with intermediate stage

    Full text link
    Scalar cosmological perturbations with nearly flat power spectrum may originate from perturbations of the phase of a scalar field conformally coupled to gravity and rolling down negative quartic potential. We consider a version of this scenario whose specific property is a long intermediate stage between the end of conformal rolling and horizon exit of the phase perturbations. Such a stage is natural, e.g., in cosmologies with ekpyrosis or genesis. Its existence results in small negative scalar tilt, statistical anisotropy of all even multipoles starting from quardupole of general structure (in contrast to the usually discussed single quadrupole of special type) and non-Gaussianity of a peculiar form.Comment: 35 pages, 1 figure. Journal version. Discussion of the range of relevant momentum scales and bounds on parameters adde

    Quantum Creation of an Open Inflationary Universe

    Get PDF
    We discuss a dramatic difference between the description of the quantum creation of an open universe using the Hartle-Hawking wave function and the tunneling wave function. Recently Hawking and Turok have found that the Hartle-Hawking wave function leads to a universe with Omega = 0.01, which is much smaller that the observed value of Omega > 0.3. Galaxies in such a universe would be about 1010810^{10^8} light years away from each other, so the universe would be practically structureless. We will argue that the Hartle-Hawking wave function does not describe the probability of the universe creation. If one uses the tunneling wave function for the description of creation of the universe, then in most inflationary models the universe should have Omega = 1, which agrees with the standard expectation that inflation makes the universe flat. The same result can be obtained in the theory of a self-reproducing inflationary universe, independently of the issue of initial conditions. However, there exist two classes of models where Omega may take any value, from Omega > 1 to Omega << 1.Comment: 23 pages, 4 figures. New materials are added. In particular, we show that boundary terms do not help to solve the problem of unacceptably small Omega in the new model proposed by Hawking and Turok in hep-th/9803156. A possibility to solve the cosmological constant problem in this model using the tunneling wave function is discusse

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change
    corecore