32 research outputs found

    Tissue-Restricted Expression of Nrf2 and Its Target Genes in Zebrafish with Gene-Specific Variations in the Induction Profiles

    Get PDF
    The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH). Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a) suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM) and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2

    Sensory systems and ionocytes are targets for silver nanoparticle effects in fish

    Get PDF
    <p>Some nanoparticles (NPs) may induce adverse health effects in exposed organisms, but to date the evidence for this in wildlife is very limited. Silver nanoparticles (AgNPs) can be toxic to aquatic organisms, including fish, at concentrations relevant for some environmental exposures. We applied whole mount <i>in-situ</i> hybridisation (<i>WISH</i>) in zebrafish embryos and larvae for a suite of genes involved with detoxifying processes and oxidative stress, including metallothionein (<i>mt2</i>), glutathionine <i>S</i>-transferase pi (<i>gstp</i>), glutathionine <i>S</i>-transferase mu (<i>gstm1</i>), haem oxygenase (<i>hmox1</i>) and ferritin heavy chain 1 (<i>fth1</i>) to identify potential target tissues and effect mechanisms of AgNPs compared with a bulk counterpart and ionic silver (AgNO<sub>3</sub>). AgNPs caused upregulation in the expression of <i>mt2, gstp</i> and <i>gstm1</i> and down regulation of expression of both <i>hmox1</i> and <i>fth1</i> and there were both life stage and tissue-specific responses. Responding tissues included olfactory bulbs, lateral line neuromasts and ionocytes in the skin with the potential for effects on olfaction, behaviour and maintenance of ion balance. Silver ions induced similar gene responses and affected the same target tissues as AgNPs. AgNPs invoked levels of target gene responses more similar to silver treatments compared to coated AgNPs indicating the responses seen were due to released silver ions. In the <i>Nrf2</i> zebrafish mutant, expression of <i>mt2</i> (24 hpf) and <i>gstp</i> (3 dpf) were either non-detectable or were at lower levels compared with wild type zebrafish for exposures to AgNPs, indicating that these gene responses are controlled through the Nrf2-Keap pathway.</p
    corecore