169 research outputs found

    Laboratory assessment of the influence of rice straw mulch size on soil loss

    Get PDF
    Application of crop residues (mulch) over the soil surface is a common practice to control soil erosion and promote infiltration. This laboratory study aimed at investigating the effect of different rice straw mulch sizes on runoff and sediment transport. The experimental runs were conducted using a soil flume of adjustable slope and a rainfall simulator, considering bare soil and three different soil covers: 1, 2 and 5&thinsp;t ha−1 application rates, for three sizes of rice straw mulch (10, 30 and 200&thinsp;mm). The experimental results showed that for the same mulch application rate (by weight), the smaller mulch sizes (i.e. high surface coverage percentage) presented less soil loss. For example, 90&thinsp;% soil loss reduction was achieved for smaller sizes of rice straw mulch and 80&thinsp;% for the bigger size. The results of this study are an important contribution to the understanding of the soil loss process in small basins and to the definition of relevant soil conservation measures, at the plot/field scale.</p

    Induction of Systemic Resistance in Maize and Antibiofilm Activity of Surfactin From Bacillus velezensis MS20

    Get PDF
    Surfactin lipopeptide is an eco-friendly microbially synthesized bioproduct that holds considerable potential in therapeutics (antibiofilm) as well as in agriculture (antifungal). In the present study, production of surfactin by a marine strain Bacillus velezensis MS20 was carried out, followed by physico-chemical characterization, anti-biofilm activity, plant growth promotion, and quantitative Reverse Transcriptase-Polymerase Chain Reaction (q RT-PCR) studies. From the results, it was inferred that MS20 was found to produce biosurfactant (3,300 mg L-1) under optimized conditions. From the physicochemical characterization [Thin layer chromatography (TLC), Fourier Transform Infrared (FTIR) Spectroscopy, Liquid Chromatography/Mass Spectroscopy (LC/MS), and Polymerase Chain Reaction (PCR) amplification] it was revealed to be surfactin. From bio-assay and scanning electron microscope (SEM) images, it was observed that surfactin (MIC 50 mu g Ml(-1)) has appreciable bacterial aggregation against clinical pathogens Pseudomonas aeruginosa MTCC424, Escherichia coli MTCC43, Klebsiella pneumoniae MTCC9751, and Methicillin resistant Staphylococcus aureus (MRSA) and mycelial condensation property against a fungal phytopathogen Rhizoctonia solani. In addition, the q-RTPCR studies revealed 8-fold upregulation (9.34 +/- 0.11-fold) of srfA-A gene compared to controls. Further, treatment of maize crop (infected with R. solani) with surfactin and MS20 led to the production of defense enzymes. In conclusion, concentration and synergy of a carbon source with inorganic/mineral salts can ameliorate surfactin yield and, application wise, it has antibiofilm and antifungal activities. In addition, it induced systemic resistance in maize crop, which makes it a good candidate to be employed in sustainable agricultural practices.Peer reviewe

    Sustainable adsorption method for the remediation of malachite green dye using nutraceutical industrial fenugreek seed spent

    Get PDF
    Nutraceutical industrial fenugreek seed spent (NIFGS), a relatively low-cost material abundantly available with nearly negligible toxicity for the bioremediation of malachite green (MG) dye from aqueous media, is reported. Studies on the various parameters affecting the adsorption capacity of NIFGS were carried out to evaluate the kinetics and the equilibrium thermodynamics. All the experiments were designed at about pH 7. The adsorption isotherm model proposed by Langmuir fits better than the Freundlich isotherm model. Kinetic study data confirms the viability of pseudo-second-order model. Calculated thermodynamic factors suggest that the adsorption phenomenon is endothermic, almost instantaneous, and physical in nature

    Hydrogen injection in a dual fuel engine fueled with low-pressure injection of methyl ester of peruvenia thevetia [MEPT] for diesel engine maintenance application

    Get PDF
    The present work is mapped to scrutinize the consequence of biodiesel and gaseous fuel properties, and their impact on compression-ignition (CI) engine combustion and emission characteristics in single and dual fuel operation. Biodiesel prepared from non-edible oil source derived from Thevetia peruviana belonging to the plant family of Apocynaceaeis. The fuel has been referred as methyl ester of Thevetia peruviana (METP) and adopted as pilot fuel for the effective combustion of compressed gaseous fuel of hydrogen. This investigation is an effort to augment the engine performance of a biodiesel-gaseous fueled diesel engine operated under varied engine parameters. Subsequently, consequences of gas flow rate, injection timing, gas entry type, and manifold gas injection on the modified dual-fuel engine using conventional mechanical fuel injections (CMFIS) for optimum engine performance were investigated. Fuel consumption, CO, UHC, and smoke formations are spotted to be less besides higher NOx emissions compared to CMFIS operation. The fuel burning features such as ignition delay, burning interval, and variation of pressure and heat release rates with crank angle are scrutinized and compared with base fuel. Sustained research in this direction can convey practical engine technology, concerning fuel combinations in the dual fuel mode, paving the way to alternatives which counter the continued fossil fuel utilization that has detrimental impacts on the climate

    Maximization of propylene in an industrial FCC unit

    Get PDF
    YesThe FCC riser cracks gas oil into useful fuels such as gasoline, diesel and some lighter products such as ethylene and propylene, which are major building blocks for the polyethylene and polypropylene production. The production objective of the riser is usually the maximization of gasoline and diesel, but it can also be to maximize propylene. The optimization and parameter estimation of a six-lumped catalytic cracking reaction of gas oil in FCC is carried out to maximize the yield of propylene using an optimisation framework developed in gPROMS software 5.0 by optimizing mass flow rates and temperatures of catalyst and gas oil. The optimal values of 290.8 kg/s mass flow rate of catalyst and 53.4 kg/s mass flow rate of gas oil were obtained as propylene yield is maximized to give 8.95 wt%. When compared with the base case simulation value of 4.59 wt% propylene yield, the maximized propylene yield is increased by 95%

    Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell functions in order to replicate. This is mediated through a network of virus-host interactions. A variety of recent studies have catalogued this information. In particular the HIV-1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein interaction detail. However, as a map of HIV-1 infection, the HHPID is problematic, as it contains curation error and redundancy; in addition, it is based on a heterogeneous set of experimental methods. Based on identifying shared patterns of HIV-host interaction, we have developed a novel methodology to delimit the core set of host-cellular functions and their associated perturbation from the HHPID. Initially, using biclustering, we identify 279 significant sets of host proteins that undergo the same types of interaction. The functional cohesiveness of these protein sets was validated using a human protein-protein interaction network, gene ontology annotation and sequence similarity. Next, using a distance measure, we group host protein sets and identify 37 distinct higher-level subsystems. We further demonstrate the biological significance of these subsystems by cross-referencing with global siRNA screens that have been used to detect host factors necessary for HIV-1 replication, and investigate the seemingly small intersect between these data sets. Our results highlight significant host-cell subsystems that are perturbed during the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that contribute to these perturbations. Thus, our work disentangles the complex set of HIV-1-host protein interactions in the HHPID, reconciles these with siRNA screens and provides an accessible and interpretable map of infection

    In Vivo Chromatin Organization of Mouse Rod Photoreceptors Correlates with Histone Modifications

    Get PDF
    BACKGROUND: The folding of genetic information into chromatin plays important regulatory roles in many nuclear processes and particularly in gene transcription. Post translational histone modifications are associated with specific chromatin condensation states and with distinct transcriptional activities. The peculiar chromatin organization of rod photoreceptor nuclei, with a large central domain of condensed chromatin surrounded by a thin border of extended chromatin was used as a model to correlate in vivo chromatin structure, histone modifications and transcriptional activity. METHODOLOGY: We investigated the functional relationships between chromatin compaction, distribution of histone modifications and location of RNA polymerase II in intact murine rod photoreceptors using cryo-preparation methods, electron tomography and immunogold labeling. Our results show that the characteristic central heterochromatin of rod nuclei is organized into concentric domains characterized by a progressive loosening of the chromatin architecture from inside towards outside and by specific combinations of silencing histone marks. The peripheral heterochromatin is formed by closely packed 30 nm fibers as revealed by a characteristic optical diffraction signal. Unexpectedly, the still highly condensed most external heterochromatin domain contains acetylated histones, which are usually associated with active transcription and decondensed chromatin. Histone acetylation is thus not sufficient in vivo for complete chromatin decondensation. The euchromatin domain contains several degrees of chromatin compaction and the histone tails are hyperacetylated, enriched in H3K4 monomethylation and hypo trimethylated on H3K9, H3K27 and H4K20. The transcriptionally active RNA polymerases II molecules are confined in the euchromatin domain and are preferentially located at the vicinity of the interface with heterochromatin. CONCLUSIONS: Our results show that transcription is located in the most decondensed and highly acetylated chromatin regions, but since acetylation is found associated with compact chromatin it is not sufficient to decondense chromatin in vivo. We also show that a combination of histone marks defines distinct concentric heterochromatin domains
    corecore