6 research outputs found

    Plantwide Control Design For Gas Processing Facility (Gpf) Plant

    Get PDF
    Penggunaan energi hidrokarbon saat ini masih sangat dominan, dimana energi hidrokarbon yang paling efisien adalah gas alam. Agar gas alam dapat digunakan dengan baik, maka harus diproses terlebih dahulu pada suatu plant untuk dihilangkan kandungan H2S, CO2, dan H2O yang disebut Gas Processing Facility (GPF). GPF terbagi dua unit yaitu H2S Removal System dan TEG Dehydration Unit. Adanya material recycle, integrasi panas serta produksi gas alam yang tidak selalu stabil menjadi permasalahan dalam GPF ini, sehingga pengendalian proses plant yang kompleks dibutuhkan dalam menyelesaikan permasalahan ini. Perancangan desain plantwide control (PWC) pada GPF berhasil menyelesaikan permasalahan tersebut, terbukti dengan adanya analisis dampak dari sisi energi, ekonomi dan dari kestabilan plant. Metode PWC yang digunakan menurunkan metode milik Luyben dan Skogestad. Hasil perancangan PWC pada kenaikan feed 5% mampu menurunkan penggunaan energi sebesar 52.37 kJ perjam dan mampu meningkatkan profit sebesar 360 Uperharisedangkanpadapenurunanfeedsebesar5 perhari sedangkan pada penurunan feed sebesar 5% mampu menurunkan penggunaan energi sebesar 61.38 kJ perjam dan mampu meningkatkan profit sebesar 491 U perhari. Penerapan PWC juga dapat menghasilkan respon sistem yang stabil saat dilakukan uji gangguan dibuktikan dengan settling time dan overshoot yang menurun serta eror steady state yang hilang dibandingkan dengan pengendalian PID saja sebelum dilakukan perancangan PWC. Kata Kunci : Plantwide control, gas processing, kontrol proses ================================================================================================= Hydrocarbons energy is currently still very dominant, where the most efficient hydrocarbon energy is natural gas. So that natural gas can be used properly, it must be processed first at a plant for the removed content of H2S, CO2, and H2O that called a Gas Processing Facility (GPF). GPF is divided into two units namely H2S Removal System and TEG Dehydration Unit. The existence of material recycle, heat integration, and unstable production of natural gas from well became problems in this GPF, so a complex process control required in resolving this problem. Designing plantwide control (PWC) on the GPF successfully completed these problems, as evidenced by the existence of impact analysis from the energy, the economy and the stability of the plant. PWC method that used in this final project compere Luyben and Skogestad method. The results of the design of PWC at a 5% increase in feed is capable of lowering the energy use of 52.37 kJ perhour and able to improve profit in the amount of U 360perday,whileina5360 per day, while in a 5% decrease in feed is capable of lowering the energy use of 61.38 kJ perhour and able to increase profit in the amount of U 491 per day. Application of PWC can also generate a stable system response with disturbance test, with evidence can decrease settling time and overshoot and omit steady state error compared control PID just before the redesign PWC. Keywords : Plantwide Control (PWC), Gas Processing, Process Contro

    Optimisasi Perancangan Kontrol Gas Processing Plant Menggunakan Metode Plantwide Control

    Get PDF
    Penggunaan energi hidrokarbon saat ini masih sangat dominan, dimana energi hidrokarbon yang paling efisien adalah gas alam. Agar gas alam dapat digunakan dengan baik, maka harus diproses terlebih dahulu pada suatu plant untuk dihilangkan kandungan H2S, CO2 dan H2O yang disebut Gas Processing Plant. Plant terbagi dua unit Gas Sweetening System dan Gas Dehydrating System. Adanya material recycle, integrasi panas serta produksi gas alam yang tidak selalu stabil menjadi permasalahan dalam plant ini, sehingga pengendalian proses plant yang kompleks dibutuhkan dalam menyelesaikan permasalahan ini. Perancangan desain Plantwide Control (PWC) pada Gas Processing Plant diharapkan mampu menyelesaikan permasalahan tersebut, yang akan dibuktikan dengan adanya analisis dampak dari sisi energi, ekonomi dan dari kestabilan plant. Metode PWC yang digunakan menurunkan metode milik Luyben dan Skogestad, dimana akan dibagi menjadi delapan langkah yaitu, penentuan fungsi objektif, penentuan variabel ekonomi, penentuan laju produksi, analisis derajat kebebasan, perancangan regulatory control, integrasi proses, perancangan supervisory control dengan menggunakan Model Predictive Control (MPC) dan optimisasi. Hasil optimisasi perancangan PWC mampu memberikan perubahan set point akibat adanya disturbance, dimana untuk pengendali laju aliran massa Lean Amine didapatkan set point sebesar 47,363.7 kg/h dan set point pengendali laju aliran massa Lean Triethilene Glycol sebesar 7,560.61 kg/h. Hasil perancangan PWC dengan uji perubahan feed mampu menurunkan penggunaan energi sebesar 52366.00 kJ/h, meningkatkan profit sebesar 688.19 Uperharisertamenghasilkanresponsistemyangstabil,dibuktikandengansettlingtime,overshootsertaerorsteadystatesertanilaiIntegralAbsoluteError(IAE)yangmenurundibandingkandenganpengendalianPIDsajasebelumdilakukanperancanganPWC.NilaiIAEuntukresponpengendalilajualiranmassaLeanAminemenurunsebesar63,662sedangkanuntukpengendalilajualiranmassaLeanTriethileneGlycolmenurunsebesar25,928.====================================================================================================================================Thecurrentuseofhydrocarbonenergyisstillverydominant,wherethemostefficienthydrocarbonenergyisnaturalgas.Tousenaturalgasproperly,itmustbeprocessedinaplantcalledGasProcessingPlant.ThefunctionofthisplantistoremovethedangerouscomponentlikeH2S,CO2andH2O.Thisplantdividedbytwosystems,namelyGasSweeteningSystemandGasDehydratingSystem.Thepresenceofrecyclematerial,integrationofheatandamongofnaturalgasproductionfromwellbecometheproblemsinthisplant,sothatthecontroldesignofthiscomplexplantisneededtosolvethisproblems.ControldesignwithPlantwideControl(PWC)methodofGasProcessingPlantexpectedtobeabletosolvethisproblem,Whichwillbeevidencedbytheanalysisoftheimpactofenergy,economicsandthestabilityofplant.PWCmethoduseddevelopfromtheLuybenandSkogestad’sPWCtheories,Whichwillbedividedintoeightsteps,namelydetermineobjectivefunction,determineeconomicalvariabel,determinethroughoutmanipulator,controldegreeoffreedomanalysis,regulatorycontroldesign,processintegration,supervisorycontroldesignwithModelPredictiveControl(MPC)danoptimization.TheresultofcontroldesignoptimizationwithPWCgivethesetpointchangebecausethedisturbance,whereforthemassflowrateofLeanAmineis47,363.7kg/handforthemassflowrateofLeanTriethileneGlycolis7,560.61kg/h.Intheotherhand,thismethodcanminimizetheenergyconsumptionuntil52366.00kJ/h,increasetheprofituntil688.19U per hari serta menghasilkan respon sistem yang stabil, dibuktikan dengan settling time, overshoot serta eror steady state serta nilai Integral Absolute Error (IAE) yang menurun dibandingkan dengan pengendalian PID saja sebelum dilakukan perancangan PWC. Nilai IAE untuk respon pengendali laju aliran massa Lean Amine menurun sebesar 63,662 sedangkan untuk pengendali laju aliran massa Lean Triethilene Glycol menurun sebesar 25,928. ==================================================================================================================================== The current use of hydrocarbon energy is still very dominant, where the most efficient hydrocarbon energy is natural gas. To use natural gas properly, it must be processed in a plant called Gas Processing Plant. The function of this plant is to remove the dangerous component like H2S, CO2 and H2O. This plant divided by two systems, namely Gas Sweetening System and Gas Dehydrating System. The presence of recycle material, integration of heat and among of natural gas production from well become the problems in this plant, so that the control design of this complex plant is needed to solve this problems. Control design with Plantwide Control (PWC) method of Gas Processing Plant expected to be able to solve this problem, Which will be evidenced by the analysis of the impact of energy, economics and the stability of plant. PWC method used develop from the Luyben and Skogestad’s PWC theories, Which will be divided into eight steps, namely determine objective function, determine economical variabel, determine throughout manipulator, control degree of freedom analysis, regulatory control design, process integration, supervisory control design with Model Predictive Control (MPC) dan optimization. The result of control design optimization with PWC give the set point change because the disturbance, where for the mass flow rate of Lean Amine is 47,363.7 kg/h and for the mass flow rate of Lean Triethilene Glycol is 7,560.61 kg/h. In the other hand, this method can minimize the energy consumption until 52366.00 kJ/h, increase the profit until 688.19 U per day and produces a stable system response, evidenced by settling time, overshoot, steady state errors and Integral Absolute Error (IAE) value in comparison with the PID control and feedforward control design.. The IAE value for Lean Amine mass flow controller response was decreased by 63.662 whereas for Lean Triethilene Glycol mass flow controllers decreased by 25.928

    Otomatisasi Lampu Selasar Departemen Instrumentasi Menggunakan Light Intensity Detector Bh1750 Berbasis Expert System

    Get PDF
    Sistem rangkaian lampu di Departemen Teknik Instrumentasi yaitu menggunakan timer pada lampu di lorong lantai satu, dua, dan tiga dan masih manual untuk lampu di selasar. Teknologi yang sudah diterapkan tadi kurang efektif saat mendung yang menurunkan intensitas cahaya, juga ketika terjadinya pergeseran waktu terbit dan terbenamnya matahari. Untuk mengoptimalkannya diperlukan otomatisasi lampu yang dipengaruhi intensitas cahaya dan monitoring energi listrik agar dapat diketahui berapa besar penghematannya. Otomatisasi dan monitoring lampu dilakukan dengan penambahan lux sensor BH1750 dan module PZEM004t untuk monitoring energi listrik yang sudah termasuk sensor arus, tegangan, daya, energi (KWh), dan frekuensi listrik AC. Sensor-sensor ditanamkan dalam ESP32 dan Wemos sebagai controller yang memutus aliran listrik SSR dan dihubungan dengan webserver berbasis protokol MQTT yang diakses melalui Raspberry Pi. Komponen utama hardware terdiri dari perancangan sensor BH1750 dengan Wemos dan modul PZEM 004t dengan ESP32 sampai menghubungkan Raspberry Pi dengan monitor dan software adalah membuat program pengiriman data (subscribe) ke broker MQTT dan mendesain GUI di Node Red, selanjutnya karakterisasi sistem dilakukan untuk mengetahui performansi sistem otomatisasi dan monitoring lampu. Hasil dari Tugas Akhir ini merupakan penerapan yang akan dijadikan sebagai upaya penghematan energi listrik lampu di Departemen Teknik Instrumentasi

    IoT-based for Monitoring and Control System of Composter to Accelerate Production Time of Liquid Organic Fertilizer

    Get PDF
    The composter is a method to produce the liquid organic fertilizer. The manual process certainly takes a long time. Thus, the automatic composter proposed in this research is equipped with a monitoring and control system. In producing liquid organic fertilizer using a composter, there are several things that can affect the maturity of the fertilizer, including pH and temperature factors. The reference temperature for produce liquid organic fertilizer in the composting process ranges from 30-40 oC, while the pH in the composter must be in the range of 4.5-6.5. This composter is designed to be able to carry out automatic mixing equipped with a temperature control system that serves to maintain temperature stability in the compost media according to the reference temperature. The composter design is equipped with a DHT 11 sensor as a temperature sensor, a pH sensor and the ESP 32 as the controller. Internet of Things (IoT) makes this system easy to control using android. Producing liquid organic fertilizer compered between the automatic and manual process. The results show that liquid organic fertilizer can be produced faster, has a better quantity and quality than the manual process

    Advanced Process Control to Minimize Disturbance in Gas Processing Facility (GPF)

    No full text
    For the gas treatment process, the process that occurs is separating the gas from the components of H2S, CO2, and H2O. The separation of gases from these components uses the aid of Amine fluid and TEG fluid. The unit that important in this process are Amine and TEG Contactor. To be able to separate the three components from the gas, the mass flow rate of Amine and TEG must be controlled so that the processing can work optimally. In reality in the field, the input of this process from the well is not always steady. So, this condition becomes a disturbance from the control process. The solution to minimize the disturbance of process with Advanced Process Control (APC). Therefore, this research will design APC on Amine and TEG Contactor to improve the stability of the mass flow response of Amine and TEG. In designing APC, the plant model is required first. Plant modelling obtained with software HYSYS and validated with MATLAB. The result shows the RMSE value below 5 %. The result proved to be able to make the process more stable from before design proven by slurries settling time, steadystate errors and maximum overshoot

    Plantwide Control: A New Design Procedure and Its Application at Liquefied Petroleum Gas Facility (LPGF) Plant

    No full text
    Natural Gas is the cleanest source of fossil energy, resulting in lower carbon emissions from coal and oil. In gas processing, the process done to separate the product composition is the fractionation process. In the gas industry, facilities/parts that are specifically to perform the process are called liquefied petroleum gas Facility plant (LPGF). Process Control is the key to a safe and profitable process industry. The Plantwide control is a structural design and control strategy for the factory as a whole. The preferred control method on this final task is the PID for regulatory control as well as the decentralized supervisory control for supervisory control and the real time optimizer for its optimization. The new plantwide control procedure can increase the profit in the process liquefied petroleum gas facility plant up to USD 643 h–1 (3 %) and decreased energy use by USD 5 h–1 (5.16 %). The application of the Plantwide control on the liquefied petroleum gas facility is also able to produce a stable system response when the interruption of the feed flow rate changes. This is demonstrated by decreasing slurries time and maximum overshoot as well as eliminating steady-state errors
    corecore