21 research outputs found

    A multimechanistic antibody targeting receptor-binding sites potently cross-protects against influenza B viruses

    Get PDF
    流感病毒HA是研制流感药物和流感疫苗的重要靶标,但HA具有高度变异性,如何在高变异HA中找到不变之处,即高度保守表位,是研制流感特效药物和广谱疫苗的关键。近年来国外报道的流感HA广谱中和单抗的识别位点均在较为保守的HA茎部区,而针对流感病毒与细胞受体结合部位的HA头部区尤其是RBS区,一直未能发现广谱中和抗体。夏宁邵教授团队通过探索多种免疫策略和筛选策略,成功筛选出一株广谱中和单抗12G6,识别一个位于HA头部RBS上的全新保守性表位。体外实验显示12G6人源化改造的C12G6抗体能高效中和1940-2016年间世界各地历年流行的代表三个遗传变异亚系的18个乙型流感病毒代表株对细胞的感染,并能保护小鼠致死性感染,治疗效果显著优于已报道的代表性抗体以及抗流感药物;C12G6与“达菲”联合用药具有明显的协同效果。此外,雪貂感染模型的预防和治疗效果进一步证实了C12G6作为抗体药物的治疗潜能。研究还显示该表位是病毒感染复制的关键表位,该位点的突变会造成病毒毒力显著下降。最后,研究揭示了C12G6通过五种不同的抗病毒作用机制发挥作用,提示其高效的抗病毒活性得益于多机制协同效应,这也是目前国内外第一次发现一个流感抗体能通过如此全面的抗病毒机制发挥作用。 该发现为研制能抵抗各种变异株的乙型流感特效治疗药物和通用疫苗带来新希望。 该研究工作依托分子疫苗学和分子诊断学国家重点实验室(厦门大学)、国家传染病诊断试剂与疫苗工程技术研究中心、厦门大学养生堂生物药物联合实验室完成。陈毅歆副教授、夏宁邵教授为该研究论文的共同通讯作者。在读博士研究生沈晨光、陈俊煜、李睿、王国松和硕士研究生张梦娅等为共同第一作者。【Abstract】Influenza B virus causes considerable disease burden worldwide annually, highlighting the limitations of current influenza vaccines and antiviral drugs. In recent years, broadly neutralizing antibodies (bnAbs) against hemagglutinin (HA) have emerged as a new approach for combating influenza. We describe the generation and characterization of a chimeric monoclonal antibody, C12G6, that cross-neutralizes representative viruses spanning the 76 years of influenza B antigenic evolution since 1940, including viruses belonging to the Yamagata, Victoria, and earlier lineages. Notably, C12G6 exhibits broad cross-lineage hemagglutination inhibition activity against influenza B viruses and has higher potency and breadth of neutralization when compared to four previously reported influenza B bnAbs. In vivo, C12G6 confers stronger cross-protection against Yamagata and Victoria lineages of influenza B viruses in mice and ferrets than other bnAbs or the anti-influenza drug oseltamivir and has an additive antiviral effect when administered in combination with oseltamivir. Epitope mapping indicated that C12G6 targets a conserved epitope that overlaps with the receptor binding site in the HA region of influenza B virus, indicating why it neutralizes virus so potently. Mechanistic analyses revealed that C12G6 inhibits influenza B viruses via multiple mechanisms, including preventing viral entry, egress, and HA-mediated membrane fusion and triggering antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity responses. C12G6 is therefore a promising candidate for the development of prophylactics or therapeutics against influenza B infection and may inform the design of a truly universal influenza vaccine.This research was supported by grants from the National Natural Science Foundation of China (31670934 and 81371817), the Ministry of Science and Technology of the People’s Republic of China (2011ZX09102-009-12 and 2012DFH30020), the Research Grants Council of the Hong Kong Special Administrative Region (7629/13M, 17103214, and 17154516), and a sponsored research agreement from Sanofi Pasteur. 研究工作得到了香港大学新发传染病国家重点实验室和赛诺菲巴斯德公司的技术支持和帮助,获得国家自然科学基金、新药创制国家科技重大专项、科技部对港科技合作项目等课题资助

    Estimating Failure Probability with Neural Operator Hybrid Approach

    No full text
    Evaluating failure probability for complex engineering systems is a computationally intensive task. While the Monte Carlo method is easy to implement, it converges slowly and, hence, requires numerous repeated simulations of a complex system to generate sufficient samples. To improve the efficiency, methods based on surrogate models are proposed to approximate the limit state function. In this work, we reframe the approximation of the limit state function as an operator learning problem and utilize the DeepONet framework with a hybrid approach to estimate the failure probability. The numerical results show that our proposed method outperforms the prior neural hybrid method

    Integrated Decision Algorithms for Auto-steered Electric Transmission System Asset Management

    No full text
    Abstract. Electric power transmission systems are comprised of a large number of physical assets, including transmission lines, power transformers, and circuit breakers, that are capital-intensive, highly distributed, and may fail. Managing these assets under resource constraints requires equipment health monitoring integrated with system level decision-making to optimize a number of various operational, maintenance, and investment-related objectives. Industry processes to these ends have evolved ad-hoc over the years, and no systematic structures exist to coordinate the various decision problems. In this paper, we describe our progress in building a prototype structure for this purpose together with a software-hardware environment to deploy and test it. We particularly focus on the decision algorithms and the Benders approach we have taken to solve them in an integrated fashion

    Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains.

    No full text
    Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression showed that the combined variations in plasma metabolites, including LDL/VLDL-cholesterol, trimethylamine N-oxide (TMAO), arginine, glucose and insulin, account for approximately 30 to 40% of the variation in atherosclerotic lesion area. Overall, our data provide a rich resource for studies of complex interactions underlying atherosclerosis

    Overview of the systems genetic resource.

    No full text
    <p>The database comprises mouse genomic, transcriptomic, metabolomic, proteomic, and clinical trait data from the HMDP as well as selected traditional mouse crosses and several human studies. A hierarchical model of the data and its relationships (<b>A</b>). Novel Candidate genes identified in human studies, such as <i>Pvrl2</i>, can be interrogated using a variety of data including gene expression in the Aorta (<b>B</b>) and liver (<b>C</b>) as well as metabolomics and phenotypic traits.</p
    corecore