3 research outputs found

    Compositional and Thickness Effects on the Optical Properties of Zinc–Doped Selenium–Antimony Thin Films

    Get PDF
    Chalcogenide system of antimony (Sb)-selenium (Se)-zinc (Zn) system is a promising semiconductor for phase change memory devices due to its thermal stability and low power consumption. The study investigated the effect of film thickness and zinc content on the optical properties of thermally evaporated Sb10Se90-xZnx (x = 0, 5, 10 & 15 at. %) thin films. It was found that transmittance (T~ 85-40%) and optical band gap energy (Eopt ~ 1.60 eV – 1.22 eV) decreased but absorption coefficient (α~0.840–2.031 104 cm–1) increased with increase in zinc content. Furthermore, as the film thickness increased from 53 ± 5 nm to 286 ± 10 nm, transmittance decreased but band gap energy increased due to zinc defects and localized states in the Sb10Se90-xZnx system.Keywords: Selenium; phase change memory; localized state

    Fish bladder-based activated carbon/Co3O4/TiO2 composite electrodes for supercapacitors

    Get PDF
    This research article published by Elsevier B.V., 2019Cobalt oxide/titanium dioxide/activated carbon (Co3O4/TiO2/Ac) composite was synthesized using simple sol-gel method before annealing at 300 °C. Fish bladder derived porous carbon used for the composite was synthesized by pyrolysis followed by chemical activation. Both scanning electron microscopy (SEM) and X-ray diffraction displayed Co3O4 and TiO2 phases well embedded onto the carbon matrices. Cyclic voltammetry in 6 M KOH electrolyte demonstrated that the composite has an excellent specific capacity of 946 Fg-1 for Co3O4/TiO2/Ac as compared to Co3O4/Ac, TiO2/Ac, and Ac with specific capacitances of 845, 340, and 308 F g−1, respectively at 5 mVs−1. Impedance spectroscopy reveals that the composite has good capacitive behavior with a series resistance of 0.6 Ω. Besides, Co3O4/TiO2/Ac maintains 89.7% of the initial capacitance after 2000 cycles. This study shows that the synergistic effect of the metal oxides and the carbon in the composite can enhance capacitance for practical supercapacitor applications
    corecore