83 research outputs found
Appearances can be deceptive: Revealing a hidden viral infection with deep sequencing in a plant quarantine context
Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of
regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which
are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the
utility of sequence-independent next generation sequencing (NGS) of both virus-derived small interfering RNAs (siRNAs)
and virion-associated nucleic acids (VANA) for the detailed identification and characterisation of viruses infecting two
quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak
Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae), but were revealed by the NGS approaches to also be infected by
a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV). This novel virus had escaped
detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from
Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share .91% genomewide
identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV
isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of
virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both
genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that
these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the
potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such
techniques could dramatically reduce the numbers of non-intercepted virus pathogens passing through plant quarantine
stations
Appearances can be deceptive: revealing a hidden viral infection with deep sequencing in a plant quarantine context
Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the utility of sequence-independent next generation sequencing (NGS) of both virus-derived small interfering RNAs (siRNAs) and virion-associated nucleic acids (VANA) for the detailed identification and characterisation of viruses infecting two quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae), but were revealed by the NGS approaches to also be infected by a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV). This novel virus had escaped detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share .91% genomewide identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such techniques could dramatically reduce the numbers of non-intercepted virus pathogens passing through plant quarantine stations
Evidence of pervasive biologically functional secondary-structures within the genomes of eukaryotic single-stranded DNA viruses
Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary-structures through Watson-Crick base-pairing between their constituent nucleotides. A few of the structural elements formed by such base-pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. What is unknown, however, is (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist, and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae andGeminiviridae, and analysed these for evidence of natural selection favouring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base-paired than it is at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary-structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterised structural elements that likely have important functions within some of the ssDNA virus genomes analysed here
A novel East African monopartite begomovirus-betasatellite complex that infects Vernonia amygdalina
The complete genomes of a monopartite begomovirus (genus Begomovirus, family Geminiviridae) and an associated betasatellite found infecting Vernonia amygdalina Delile (family Compositae) in Uganda were cloned and sequenced. Begomoviruses isolated from two samples showed the highest nucleotide sequence identity (73.1% and 73.2%) to an isolate of the monopartite begomovirus tomato leaf curl Vietnam virus, and betasatellites from the same samples exhibited the highest nucleotide sequence identity (67.1% and 68.2%) to vernonia yellow vein Fujian betasatellite. Following the current taxonomic criteria for begomovirus species demarcation, the isolates sequenced here represent a novel begomovirus species. Based on symptoms observed in the field, we propose the name vernonia crinkle virus (VeCrV) for this novel begomovirus and vernonia crinkle betasatellite (VeCrB) for the associated betasatellite. This is the first report of a monopartite begomovirus-betasatellite complex from Uganda
Recommended from our members
Molecular characterization and phylogenetic analysis of betasatellite molecules associated with okra yellow vein mosaic disease in Sri Lanka
Okra production in Sri Lanka has been severely affected by okra yellow vein mosaic disease (OYVMD), which is caused by
begomoviruses and associated betasatellites. These betasatellite molecules commonly determine the development and severity of the disease. Therefore, knowledge about the genetic variability of betasatellites associated with OYVMD could assist okra breeding programs in the selection of resistant varieties. The present study aimed to characterize the betasatellite DNA sequences associated with OYVMD in Sri Lanka and to determine their phylogenetic relationships. Betasatellite DNA of six virus isolates from widely separated geographical locations were sequenced and compared with already reported begomovirus betasatellites. The betasatellite molecules have features common to other betasatellite DNAs: a conserved nonanucleotide TAATATTAC, a coding sequence for the protein ÎČC1, an adenine rich region and a satellite conserved region. Nucleotide diversity among the isolates was relatively low (Ï = 0.034). A recombination event was detected at a specific region in the genome of all isolates. The isolates shared >96% sequence identity with bhendi yellow vein betasatellites reported from India and phylogenetic analysis confirmed their genetic relationship
Desmodium mottle virus, the first legumovirus (genus Begomovirus) from East Africa
A novel bipartite legumovirus (genus Begomovirus, family Geminiviridae), that naturally infects the wild leguminous plant Desmodium sp. in Uganda, was molecularly characterized and named Desmodium mottle virus. The highest nucleotide identities for DNA-A, obtained from two field-collected samples, were 79.9% and 80.1% with the legumovirus, soybean mild mottle virus. DNA-B had the highest nucleotide identities (65.4% and 66.4%) with a typical non-legumovirus Old World begomovirus, African cassava mosaic virus. This is the first report of a legumovirus in East Africa and extends the known diversity of begomoviruses found infecting wild plants in this continent
Extensive recombinationâinduced disruption of genetic interactions is highly deleterious but can be partially reversed by small numbers of secondary-recombination events
Although homologous recombination can potentially provide viruses with vastly more evolutionary options than are available
through mutation alone, there are considerable limits on the adaptive potential of this important evolutionary process. Primary
among these is the disruption of favorable coevolved genetic interactions that can occur following the transfer of foreign genetic
material into a genome. Although the fitness costs of such disruptions can be severe, in some cases they can be rapidly recouped
by either compensatory mutations or secondary recombination events. Here, we used a maize streak virus (MSV) experimental
model to explore both the extremes of recombination-induced genetic disruption and the capacity of secondary recombination
to adaptively reverse almost lethal recombination events. Starting with two naturally occurring parental viruses, we synthesized
two of the most extreme conceivable MSV chimeras, each effectively carrying 182 recombination breakpoints and containing
thorough reciprocal mixtures of parental polymorphisms. Although both chimeras were severely defective and apparently noninfectious,
neither had individual movement-, encapsidation-, or replication-associated genome regions that were on their own
âlethally recombinant.â Surprisingly, mixed inoculations of the chimeras yielded symptomatic infections with viruses with secondary
recombination events. These recombinants had only 2 to 6 breakpoints, had predominantly inherited the least defective
of the chimeric parental genome fragments, and were obviously far more fit than their synthetic parents. It is clearly evident,
therefore, that even when recombinationally disrupted virus genomes have extremely low fitness and there are no easily accessible
routes to full recovery, small numbers of secondary recombination events can still yield tremendous fitness gains
- âŠ