16 research outputs found

    IoT Enabled Smart Controller for PDLC s switchable films with Energy Saving Features

    No full text
    Polymer Dispersed Liquid Crystal (PDLC) is an active smart film that changes its opacity in response to an external voltage. The power consumption of the smart film is considerably small however, improper handling of the smart film such as not turning off the film after usage can lead to energy wastage. In this project, the design of a smart, low cost and efficient Internet of Things (IoT)smart controller for Polymer Dispersed Liquid Crystal (PDLC) switchable films with energy saving features based on Wi Fi is delineated. The implementation of the IoT features, NodeMCU, and environmental sensors enabled the smart film to be capable of switching automatically. In addition, voice command features were also incorporated into the controller. With the successful development of the IoT smart controller, the users can operate the switching of the PDLC films remotely

    Internet of things-enabled smart controller for polymer dispersed liquid crystals films

    Get PDF
    The evolvement of smart glass technology has gained a lot of interest through its energy-saving potential as one of the heating, ventilating, and air-conditioning (HVAC) system. This paper focuses on polymer dispersed liquid crystal (PDLC) film, a smart glazing film that changes its opacity in response to an electrical impulse. The power consumption of the smart film is considerably small. However, improper handling of the smart film such as not turning off the film after usage can lead to energy wastage. Hence, connecting the smart film to an internet of things (IoT) controller would be one of the possible solutions to ensure that the film is maintained properly. The objective of the work here is to develop a smart, low cost and efficient IoT-enabled smart controller for PDLC films with energy-saving features. In pursuance of materializing this concept, this paper delineates the design of a smart controller for the PDLC films. The implementation of the IoT features, NodeMCU, and environmental sensors enabled the smart film to be capable of switching automatically. In addition, voice-command features were also incorporated into the controller. With the successful development of the IoT smart controller, the PDLC films can operate autonomously and wirelessly

    Simulation Studies to Quantify the Impacts of Point Defects: an Investigation of Cs2agbibr6 Perovskite Solar Devices Utilizing Zno and Cu2o As the Charge Transport Layers

    No full text
    In this investigation, we have applied SCAPS and wxAMPS to simulate defects and probe a photovoltaic device utilizing Cs2AgBiBr6 as the active photovoltaic layer and ZnO and Cu2O as the electron transport layer (ETL) and hole transport layer (HTL) respectively. At the Cs2AgBiBr6 bulk we find that with increasing defect density, each defect level has increasing impact on all device performance parameters. At a given defect density however, we find that that deeper defects have more profound impacts on Jsc and FF, and minimal effects on Voc. Specific to the Cs2AgBiBr6 structure, we have investigated VAg (shallow defect), VBi (deep defect) and Bri (quasi-deep defect). Our results provide insight into the growth conditions of Cs2AgBiBr6, with a need to have both Br-poor and Bi-rich conditions, and a preference for the latter over the former to suppress the deeper defect. Exploring the performance kinetics at the ZnO/Cs2AgBiBr6 and Cs2AgBiBr6/Cu2O interfaces due to defect type, location and density, we showcase a remarkably stable behavior in both Voc and Jsc across both interfaces. We attribute this to much higher charge mobilities in the ZnO and Cu2O compared to the Cs2AgBiBr6 layer combined with similar defect densities across the layers, leading to effective charge extraction and minimal charge recombination

    Exploring Solar Cell Performance of Inorganic Cs2tibr6 Halide Double Perovskite: A Numerical Study

    No full text
    With a high power-conversion efficiency (PCE) of over 23%, perovskite solar cell (PSC) technology holds a viable trajectory for commercialization. Despite its attractive features, the use of lead and degradable components in the device need to be addressed. To this end, we have carried out simulation studies to explore a non-toxic and inorganic device utilizing Cs2TiBr6 as the active layer and Cu2O as the hole transport layer (HTL). We have investigated a few of the most critical areas of device physics to glean insights into possible ways of improving the performance of such a viable technology. A PCE of 14.68% (open-circuit voltage Voc of 1.10 V, short-circuit current Jsc of 25.82 mA/cm2, and fill factor FF of 51.74%) was obtained at an optimal perovskite layer thickness of 800 nm. Our investigation further reveals that with increasing perovskite thickness, as J0 (saturation current) decreases, Voc increases. By varying the radiative recombination rate, we quantitatively demonstrate an inverse relationship with PCE, and report out a PCE of 20.49% at a 100X lower than usual recombination rate. A PCE of 14.68% was obtained with an optimal work function of 5.1 eV for the metal back contact. A conduction band offset of −0.1 eV between the TiO2 electron transport layer (ETL) and the active layer and a valence band offset of −0.4 eV between the active layer and the HTL produce optimal PCE values of 14.68% and 18.97% respectively. Lastly, we demonstrate that Cs2TiBr6 is more sensitive to defect density than the device HTL and ETL by a factor of 10

    Performances of Polymer-Dispersed Liquid Crystal Films for Smart Glass Applications

    No full text
    Polymer-dispersed liquid crystal (PDLC) film is an active smart film penetrating the market due to its unique functionalities. These functional characteristics include switchable tint capabilities, which shield building residents from the sun’s harmful ultraviolet (UV) rays, improve energy-saving features, and produce higher cost-efficiency. Although PDLC films are promising in several applications, there is still ambiguity on the performance of PDLC films. Particularly, the sizing effects’ (such as film thickness and area) correlation with visible light transmission (VLT), ultraviolet rejection (UVR), infrared rejection (IRR), light intensity, current consumption, and apparent power consumption is not well understood. Therefore, this study investigated the sizing effects of PDLC films, including the thickness effect on VLT, UVR, IRR, light intensity, and area influence on current and apparent power consumptions. The varying applied voltage effect on the light transmittance of the PDLC film was also effectively demonstrated. A 0.1 mm PDLC film was successfully presented as a cost-efficient film with optimal parameters. Consequently, this study paves the way for a clearer understanding of PDLC films (behavior and sizing effects) in implementing economic PDLC films for large-scale adoption in commercial and residential premises

    Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: A numerical study

    No full text
    With a high power-conversion efficiency (PCE) of over 23%, perovskite solar cell (PSC) technology holds a viable trajectory for commercialization. Despite its attractive features, the use of lead and degradable components in the device need to be addressed. To this end, we have carried out simulation studies to explore a non-toxic and inorganic device utilizing Cs2TiBr6 as the active layer and Cu2O as the hole transport layer (HTL). We have investigated a few of the most critical areas of device physics to glean insights into possible ways of improving the performance of such a viable technology. A PCE of 14.68% (open-circuit voltage Voc of 1.10 V, short-circuit current Jsc of 25.82 mA/cm2, and fill factor FF of 51.74%) was obtained at an optimal perovskite layer thickness of 800 nm. Our investigation further reveals that with increasing perovskite thickness, as J0 (saturation current) decreases, Voc increases. By varying the radiative recombination rate, we quantitatively demonstrate an inverse relationship with PCE, and report out a PCE of 20.49% at a 100X lower than usual recombination rate. A PCE of 14.68% was obtained with an optimal work function of 5.1 eV for the metal back contact. A conduction band offset of −0.1 eV between the TiO2 electron transport layer (ETL) and the active layer and a valence band offset of −0.4 eV between the active layer and the HTL produce optimal PCE values of 14.68% and 18.97% respectively. Lastly, we demonstrate that Cs2TiBr6 is more sensitive to defect density than the device HTL and ETL by a factor of 10

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    The Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
    corecore