172 research outputs found

    Surgical Management of Soft Tissue Sarcoma

    Get PDF
    Background: To study the management patternof soft tissue sarcomas in a tertiary care settingMethods: In this descriptive study patients whowere operated for soft tissue masses were included.Intra-operative findings, procedure details andpostoperative orders were recorded. Postoperativechemo-radiotherapy records were reviewed andrecorded. Depth of the tumour was grouped asdeeper or superficial than 5 cm. The follow uprecords were accessed from the outpatientdepartment and any surgical complications wererecorded up to three years.Staging was done usingclinical and radiological criteria taking into accountthe histological grade,tumour size , depth, locallymph node invasion and metastasis.Surgicalprocedure for removal of STS are wide local excision(WLE), intralesional excision (IE) or tumordebulking, marginal excision (ME) and radicalexcision (RE).Results: Sixty eight patients with mean age of 43.0± 17.258 SD were diagnosed as cases of soft tissuesarcomas. Male to female ratio was 3.25:1.The mostcommon histopathological variety was malignantfibrous histiocytoma (35.3%) , followed byRhabdomyosarcoma(30%). Most common involvedsite was lower limbs (35.3%).Wide local excision wasperformed in majority (82.4%) . Most commonpostop complication was wound infection (10.3%)Conclusion: Clinicians must be agile about thenature of these tumours and their referral to aspecialist surgeon for further management. Promptdiagnosis, accurate investigations and earlyintervention will benefit the patients and help usunderstand this disease entity

    Chromium removal from aqueous solution using bimetallic Bi\u3csup\u3e0\u3c/sup\u3e/Cu\u3csup\u3e0\u3c/sup\u3e-based nanocomposite biochar

    Get PDF
    Chromium (Cr), due to its greater contamination in aquifers and distinct eco-toxic impacts, is of greater environmental concern. This study aimed to synthesize nanocomposites of almond shells biochar (BC) with zerovalent bismuth and/or copper (Bi0/BC, Cu0/BC, and Bi0–Cu0/BC) for the removal of Cr from aqueous solution. The synthesized nanocomposites were investigated using various characterization techniques such as XRD, FTIR spectroscopy, SEM, and EDX. The Cr removal potential by the nanocomposites was explored under different Cr concentrations (25–100 mg/L), adsorbent doses (0.5–2.0 g/L), solution pH (2–8), and contact time (10–160 min). The above-mentioned advanced techniques verified successful formation of Bi0/Cu0 and their composite with BC. The synthesized nanocomposites were highly effective in the removal of Cr. The Bi0–Cu0/BC nano-biocomposites showed higher Cr removal efficiency (92%) compared to Cu0/BC (85%), Bi0/BC (76%), and BC (67%). The prepared nanocomposites led to effective Cr removal at lower Cr concentrations (25 mg/L) and acidic pH (4.0). The Cr solubility changes with pH, resulting in different degrees of Cr removal by Bi0–Cu0/BC, with Cr(VI) being more soluble and easier to adsorb at low pH levels and Cr(III) being less soluble and more difficult to adsorb at high pH levels. The experimental Cr adsorption well fitted with the Freundlich adsorption isotherm model (R 2 \u3e 0.99) and pseudo-second-order kinetic model. Among the prepared nanocomposites, the Bi0–Cu0/BC showed greater stability and reusability. It was established that the as-synthesized Bi0–Cu0/BC nano-biocomposite showed excellent adsorption potential for practical Cr removal from contaminated water

    Assembly of Smart Microgels and Hybrid Microgels on Graphene Sheets for Catalytic Reduction of Nitroarenes

    Get PDF
    Poly (N-isopropylacrylamide-acrylic acid) [p(NIPAM-AAc)] microgel was successfully fabricated using the precipitation polymerization method. Silver (Ag) nanoparticles and graphene oxide (G) were used to fabricate the following hybrid microgels: Ag-p(NIPAM-AAc) (Ag-HMG), Ag-G-p(NIPAM-AAc) (Ag-G-HMG), and G-p(NIPAM-AAc) (G-HMG). Ag-HMG, Ag-G-HMG, and G-HMG were characterized using a Zetasizer and UV-Vis spectroscopy. The reduction of a series of different compounds with comparable and distinct chemical structures was catalyzed by synthesized Ag-HMG, Ag-G-HMG, and G-HMG hybrid microgels. The average size of Ag nanoparticles was found to be ~50 nm. Ag nanoparticles were synthesized within microgels attached to G sheets. Ag-p(NIPAM-AAc), Ag-G-p(NIPAM-AAc), and G-p(NIPAM-AAc) hybrid microgels were used for the catalytic reduction of nitroarenes and dyes. By comparing their apparent rate constant (kapp), reduction duration, and percentage reduction, the activity of HMG (hybrid microgel) as a catalyst towards different substrates was investigated. Graphene sheets play role in electron relay among Ag nanoparticles and microgels.publishedVersio

    Design of high gain base station antenna array for mm-wave cellular communication systems

    Get PDF
    Millimeter wave (mm-Wave) wireless communication systems require high gain antennas to overcome path loss effects and thereby enhance system coverage. This paper presents the design and analysis of an antenna array for high gain performance of future mm-wave 5G communication systems. The proposed antenna is based on planar microstrip technology and fabricated on 0.254 mm thick dielectric substrate (Rogers-5880) having a relative permittivity of 2.2 and loss tangent of 0.0009. The single radiating element used to construct the antenna array is a microstrip patch that has a configuration resembling a two-pronged fork. The single radiator has a realized gain of 7.6 dBi. To achieve the gain required by 5G base stations, a 64-element array antenna design is proposed which has a bore side gain of 21.2 dBi at 37.2 GHz. The 8 × 8, 8 × 16, and 8 × 32 antenna array designs described here were simulated and optimized using CST Microwave Studio, which is a 3D full-wave electromagnetic solver. The overall characteristics of the array in terms of reflection-coefficient and radiation patterns makes the proposed design suitable for mm-Wave 5G and other communication systems.Dr. Mohammad Alibakhshikenari acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 801538. In addition, this work was partially supported by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (Agencia Estatal de Investigación, Fondo Europeo de Desarrollo Regional -FEDER-, European Union) under the research grant PID2021-127409OB-C31 CONDOR. The authors also sincerely appreciate funding from Researchers Supporting Project number (RSP2023R58), King Saud University, Riyadh, Saudi Arabia

    Determination of Renal Changes by Ultrasonography in Patients with Type-2 Diabetes Mellitus

    Get PDF
    Background: Diabetes Type 2 causes damage to the kidneys; leading to diabetic nephropathy and high blood pressure. The aim of this study is determination of renal changes on ultrasonography in diabetic patients. Objective: This study evaluates changes in kidneys in patients presenting with type II diabetes mellitus having normal renal function test as compared to non-diabetics. Methods: It was a cross sectional descriptive study conducted on 116 patients with type 2 diabetes mellitus by using convenient sampling technique. The study was conducted at Ultrasound Department of Gulab Devi hospital Hospital from July 2019 to September 2019. Results: Out of 116 patients there were 43(37.1%) female and 73(62.1%) were male. The mean age of the participants was 53.24 ±10.49. This study shows that the mean volume of Rt kidney was 1.229E2 ±38.39 ranging from 25ml to 218ml and mean volume of Lt kidney was 1.1691E2 ±41.96 ranging from 26ml to 231ml in patients presenting with DM Type 2 and mean parenchymal thickness of the Rt kidney 14.40 ±6 range from 0.86mm to 1.25mm and Lt kidney 13.7 ±5 range from1.2mm to 25mm.This study showed that mean volume of both kidneys and  parenchymal thickness increased in patients having diabetes mellitus. Conclusion: Ultrasound is a reliable and easily available modality to detect renal changes and complications in earlier stages of Diabetes mellitus. Keywords: Type II diabetes mellitus, Renal changes, Ultrasonography DOI: 10.7176/JHMN/68-07 Publication date: November 30th 201

    Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food

    Get PDF
    Modern agriculture provides the potential for sustainable feeding of the world's increasing population. Up to the present moment, genetically modified (GM) products have enabled increased yields and reduced pesticide usage. Nevertheless, GM products are controversial amongst policy makers, scientists and the consumers, regarding their possible environmental, ecological, and health risks. Scientific-and-political debates can even influence legislation and prospective risk assessment procedure. Currently, the scientifically-assessed direct hazardous impacts of GM food and feed on fauna and flora are conflicting; indeed, a review of literature available data provides some evidence of GM environmental and health risks. Although the consequences of gene flow and risks to biodiversity are debatable. Risks to the environment and ecosystems can exist, such as the evolution of weed herbicide resistance during GM cultivation. A matter of high importance is to provide precise knowledge and adequate current information to regulatory agencies, governments, policy makers, researchers, and commercial GMO-releasing companies to enable them to thoroughly investigate the possible risks

    Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars

    Get PDF
    Salinity stress is one of the potential threats that adversely affect the productivity of many cereal crops worldwide. Spraying plants with nano-Zn particles may lessen effectively such negative impacts on plants; yet its mode of action is still not well explored. This study was performed to evaluate the effects of spraying nano-Zn particles with varying concentrations (0, 20, 50 and 80 mg L-1) on two wheat cultivars irrigated with saline water (EC = 6.3 dS m-1) versus a non-saline one. The key results revealed that root and shoot weights decreased significantly under salinity stress conditions, while improved considerably with nano-Zn-particles foliar application up to 50 mg nanoZn L-1; thereafter significant reductions occurred. Also, shoot and root lengths as well as plant leaf area index improved considerably owing to this foliar application. Clearly, roots and shoots weights of wheat plants sprayed with nano-Zn particles under salinity stress conditions exhibited higher values than the corresponding ones that was grown under non-saline conditions without nano-Zn-particles applications. Unexpectedly, this foliar spray led to significant reductions in plant pigments and also in enzymatic and non-enzymatic antioxidants in plants. Yet, this foliar spray enhanced formation of total soluble sugars and proline, and raised significantly Ca contents in wheat roots and shoots, and to some extent K contents. In conclusion, the foliar application of nano-Zn particles increased plant growth under salty stress conditions via two parallel processes, i.e., stimulating formation of osmolytes and stimulating nutrient uptake which may, in turn, increase plant metabolism. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CCPeer reviewe

    Promiscuous prediction and conservancy analysis of CTL binding epitopes of HCV 3a viral proteome from Punjab Pakistan: an In Silico Approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HCV is a positive sense RNA virus affecting approximately 180 million people world wide and about 10 million Pakistani populations. HCV genotype 3a is the major cause of infection in Pakistani population. One of the major problems of HCV infection especially in the developing countries that limits the limits the antiviral therapy is the long term treatment, high dosage and side effects. Studies of antigenic epitopes of viral sequences of a specific origin can provide an effective way to overcome the mutation rate and to determine the promiscuous binders to be used for epitope based subunit vaccine design. An <it>in silico </it>approach was applied for the analysis of entire HCV proteome of Pakistani origin, aimed to identify the viral epitopes and their conservancy in HCV genotypes 1, 2 and 3 of diverse origin.</p> <p>Results</p> <p>Immunoinformatic tools were applied for the predictive analysis of HCV 3a antigenic epitopes of Pakistani origin. All the predicted epitopes were then subjected for their conservancy analysis in HCV genotypes 1, 2 and 3 of diverse origin (worldwide). Using freely available web servers, 150 MHC II epitopes were predicted as promiscuous binders against 51 subjected alleles. E2 protein represented the 20% of all the predicted MHC II epitopes. 75.33% of the predicted MHC II epitopes were (77-100%) conserve in genotype 3; 47.33% and 40.66% in genotype 1 and 2 respectively. 69 MHC I epitopes were predicted as promiscuous binders against 47 subjected alleles. NS4b represented 26% of all the MHC I predicted epitopes. Significantly higher epitope conservancy was represented by genotype 3 i.e. 78.26% and 21.05% for genotype 1 and 2.</p> <p>Conclusions</p> <p>The study revealed comprehensive catalogue of potential HCV derived CTL epitopes from viral proteome of Pakistan origin. A considerable number of predicted epitopes were found to be conserved in different HCV genotype. However, the number of conserved epitopes in HCV genotype 3 was significantly higher in contrast to its conservancy in HCV genotype 1 and 2. Despite of the lower conservancy in genotype 1 and 2, all the predicted epitopes have important implications in diagnostics as well as CTL-based rational vaccine design, effective for most population of the world and especially the Pakistani Population.</p

    Sustainable phosphorous management in two different soil series of Pakistan by evaluating dynamics of phosphatic fertilizer source

    Get PDF
    Phosphorous (P) plays the prominent role to promote the plants storage functions and structural roles, as it is recognized as a vital component of ADP, ATP, Cell wall as well as a part of DNA. Soils acts as the sink to supply P to plants because soil pH and its physical condition are the main factor which regulate the solubility and availability P element. Phosphorus is not deficient in Pakistani soils but its availability to plants is the serious matter of concern. A pot experiment was conducted to evaluate P dynamics in two different soil series of Pakistan (Bahawalpur and Lyallpur) using Maize as test crop. The treatments applied were T0: Control (without any fertilizer), T1: Recommended DAP @648 mg pot−1, T2: Half dose DAP @324 mg pot−1, T3: Recommended rate of TSP @900 mg pot−1, T4: Half dose TSP @450 mg pot−1. Soil analysis showed that Bahawalpur soil has sandy clay loam texture with 33% clay and Lyallpur series has sandy loam texture with 15.5% clay; furthermore, these soils contain 4.6 and 2.12% CaCO3, respectively. Results showed an increase in P concentration in roots (23 mg kg−1) with the application of half dose of TSP in Lyallpur series and lowest in Bahawalpur series (14.6 mg kg−1) at recommended dose of DAP. Concentration of P in shoots responded the same; increase at half dose of TSP (16.7 mg kg−1) and lowest at full dose of DAP in Bahawalpur series as (15.58 mg kg−1). Adsorbed P (17 mg kg−1) was recorded highest in Bahawalpur soil with more clay amount in pot with DAP application but lower in Lyallpur soil series (14 mg kg−1) with the application of applied TSP. The PUE was recorded highest in Lyallpur series with the application of half dose of TSP and it was 61% more than control and was Highest in Bahawalpur series was with the application of recommended dose of DAP is 72% more than control treatment. On estimation, results showed that applied sources made an increase in P availability than control, but TSP gave better P uptake than DAP unless of rates applied. Soil of Lyallpur series showed better uptake of P and response to applied fertilizers than Bahawalpur series which showed more adsorption of P by high clay and CaCO3 amount. Conclusively, the study suggested that soil series play a crucial role in choosing fertilizer source for field application
    corecore