38 research outputs found

    A journey from Cure to Care- Wellness management for healthy lifestyle: Diabetes management a case study

    Get PDF
    Smart ubiquitous computing has a vital role to avoid and indicate the preventable lifestyle-based chronic diseases. It is focusing to adopt a healthy lifestyle by converging science and technology in this digital world for improving health and quality of life. From the last decade, the development of wellness applications has supported personalization and self-quantification. These applications facilitate the users through activity tracking and monitoring, based on the raw sensory data to adopt healthy behavior. The challenge of behavior change is not only to indicate the issues but also provides step-by-step coaching and guidance at real time. The realization of behavior change theories through digital technology has revolutionized the lifestyle change in a systematic and measurable manner. We have proposed a methodology to understand the behavior for generating just-in-time intervention for adopting a healthy lifestyle. Wellness platform based behavior analysis is performed using unbiased life-log and questionnaire for qualitative assessment of behavior. Behavior stage wise intervention is provided to adapt behavior for enhancing the quality of life and boost the socio-economic conditions. Personalized education is provided to understand the importance of healthy behavior and motivate the users, whereas just-in-time context-based recommendations have supported the stage-wise adaptation of unhealthy behavior. These capabilities require status evaluation of the activities and an efficient way to portray the comprehensive index of lifestyle habits. The real focus is to correlate the primarily linked habits in appropriate proportion through healthy behavior index (HBI) for personalized wellness support services. The healthy behavior index and behavior change theories through smart technologies

    Chitosan-based bio-composite modified with thiocarbamate moiety for decontamination of cations from the aqueous media

    Get PDF
    Herein, we report the development of chitosan (CH)-based bio-composite modified with acrylonitrile (AN) in the presence of carbon disulfide. The current work aimed to increase the Lewis basic centers on the polymeric backbone using single-step three-components (chitosan, carbon disulfide, and acrylonitrile) reaction. For a said purpose, the thiocarbamate moiety was attached to the pendant functional amine (NH2) of chitosan. Both the pristine CH and modified CH-AN bio-composites were first characterized using numerous analytical and imaging techniques, including 13C-NMR (solid-form), Fourier-transform infrared spectroscopy (FTIR), elemental investigation, thermogravimetric analysis, and scanning electron microscopy (SEM). Finally, the modified bio-composite (CH-AN) was deployed for the decontamination of cations from the aqueous media. The sorption ability of the CH-AN bio-composite was evaluated by applying it to lead and copper-containing aqueous solution. The chitosan-based CH-AN bio-composite exhibited greater sorption capacity for lead (2.54 mmol g−1) and copper (2.02 mmol g−1) than precursor chitosan from aqueous solution based on Langmuir sorption isotherm. The experimental findings fitted better to Langmuir model than Temkin and Freundlich isotherms using linear regression method. Different linearization of Langmuir model showed different error functions and isothermal parameters. The nonlinear regression analysis showed lower values of error functions as compared with linear regression analysis. The chitosan with thiocarbamate group is an outstanding material for the decontamination of toxic elements from the aqueous environment251226CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQNão temThis research was funded by the academy of sciences for developing world (TWAS) and The Brazilian National Council for Scientific and Technological Development (CNPq) fellowship to AK. The APC was funded by MDPI, St. Alban-Anlage 66, 4052 Basel, Switzerlan

    Engineering functionalized chitosan-based sorbent material : characterization and sorption of toxic elements

    Get PDF
    The present study reports the engineering of functionalized chitosan (CH)-based biosorbent material. Herein, a two-step reaction was performed to chemically modify the CH using 1,4-bis(3-aminopropyl) piperazine to incorporate nitrogen basic centers for cations sorption from the aqueous environment. The resultant functionalized chitosan-based sorbent material was designated as CH-ANP and characterized using various analytical techniques, including elemental analysis, Fourier-transform infrared spectroscopy (FTIR), 13C NMR (in solid-state), X-ray diffraction, and thermal analysis. Then, the newly engineered CH-ANP was employed for the removal of copper, lead, and cadmium in the aqueous medium. Langmuir sorption isotherm analysis revealed that the highest sorption abilities achieved were 2.82, 1.96, and 1.60 mmol g−1 for copper, cadmium, and lead, respectively. Linear and nonlinear regression methods were deployed on the sorption data to study the behavior of the Langmuir, the Freundlich, and the Temkin sorption isotherms. Among the four different forms, the Langmuir isotherm type 1 fit well to the experimental data as compared to the other models. It also showed the lowest values of error, and a higher correlation coefficient than the Freundlich and Temkin models; thus it was the best fit with the experimental data compared to the latter two models. In conclusion, the findings suggest that chemically modified novel materials with enhanced Lewis basic centers are useful and promising candidates for the sorption of various toxic cations in aqueous solution9235138CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQThis research was funded by The acadmey of sciences for developing world (TWAS) and The Brazilian National Council for Scientific and Technological Development (CNPq) fellowship to AK. The APC was funded by MDPI, St. Alban-Anlage 66, 4052 Basel, Switzerlan

    Holistic User eXperience in Mobile Augmented Reality Using User eXperience Measurement Index

    Get PDF
    © 2019 IEEE. User eXperience (UX) evaluation in the field of Mobile Augmented Reality (MAR) is a challenging task, which requires the application of many heterogeneous methods, producing a variety of raw signals and subjective data. This multi-method approach is essential for capturing the holistic UX of any product, service or system. In order to convert this data into information and subsequently knowledge, a comprehensive and scalable system is required which can not only quantify the individual UX metrics but also produce a concise result, which is interpretable by anyone. We call this result, the User Experience Measurement Index, and in this paper we present the results of adopting the mixed method UX evaluation approach for evaluating a prototype MAR application using various methods and sensors, applied before, during, and after its usage. Additionally, we present the methodology and results for calculating the UXMI

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment

    No full text
    Recently, the increasing concentration and persistent appearance of antibiotics traces in the water streams are considered an issue of high concern. In this context, an array of antibiotics has been categorized as pollutants of emerging concern due to their complex and highly stable bioactivity, indiscriminate usage with ultimate release into water bodies, and notable persistence in environmental matrices. Moreover, antibiotics traces containing household sewage/drain waste and pharmaceutical wastewater effluents contain a range of bioactive/toxic organic compounds, inorganic salts, pharmaceutically-active ingredients, or a mixture of all, which possesses negative influences ranging from ecological pollution to damage biodiversity. Moreover, their uncontrolled and undesirable bioaccumulation also poses a potential threat to target and non-target organisms in the environment. Aiming to tackle this issue effectively, various detection, quantification, degradation, and redefining “removal” processes have been proposed and investigated based on physical, chemical, and biological strategies. Though both useful and side effects of antibiotics on humans and animals are usually investigated thoroughly following safety and toxicity measures, however, their direct or indirect environmental impacts are not well reviewed yet. Owing to the considerable research gap, the environmental perfectives of antibiotics traces and their effects on target and non-target populations have now become the topic of research interest. Based on literature evidence, over the past several years, numerous individual studies have been performed and published covering various aspects of antibiotics. However, a comprehensive compilation on enzyme-based degradation of antibiotics is still lacking and requires careful consideration. Hence, this review summarizes up-to-date literature on enzymes as biocatalytic systems, explicitly, free as well as immobilized forms and their effective exploitation for the degradation of various antibiotics traces and other pharmaceutically-active compounds present in the water bodies. It is further envisioned that the enzyme-based strategies, for antibiotics degradation or removal, discussed herein, will help readers for a better understanding of antibiotics persistence in the environment along with the associated risks and removal measures. In summary, the current research thrust presented in this review will additionally evoke researcher to engineer robust and sustainable processes to effectively remediate antibiotics-contaminated environmental matrices.All authors are grateful to their representative universities/institutes for providing literature facilities.Peer reviewe

    MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce.

    No full text
    Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement

    Identification and Molecular Characterization of Geranyl Diphosphate Synthase (GPPS) Genes in Wintersweet Flower

    No full text
    Geranyl diphosphate synthase (GPPS) is a plastid localized enzyme that catalyzes the biosynthesis of Geranyl diphosphate (GPP), which is a universal precursor of monoterpenes. Wintersweet (Chimonanthus praecox L.), a famous deciduous flowering shrub with a strong floral scent character, could have GPPS-like homologs that are involved in monoterpenes biosynthesis, but it remains unclear. In the present study, five full-length GPPS and geranylgeranyl diphosphate synthases (GGPPS) genes were identified in the wintersweet transcriptome database. The isolated cDNAs showed high protein sequence similarity with the other plants GPPS and GGPPS. The phylogenetic analysis further classified these cDNAs into four distinct clades, representing heterodimeric GPPS small subunits (SSU1 and SSU2), homodimeric GPPS, and GGPPS. Analysis of temporal expression revealed that all genes have the highest transcript level at the full-open flower stage. From tissue-specific expression analysis, CpGPPS.SSU1 and CpGGPPS1 were predominantly expressed in petal and flower, whereas CpGPPS.SSU2, GPPS, and GGPPS2 showed a constitutive expression. Additionally, the subcellular localization assay identified the chloroplast localization of SSUs and GGPPSs proteins, and the yeast two-hybrid assay showed that both CpGPPS.SSU1 and CpGPPS.SSU2 can interact with the GGPPS proteins. Taken together, these preliminary results suggest that the heterodimeric GPPS can regulate floral scent biosynthesis in wintersweet flower

    Effects of Virtual Reality Exercises on Chronic Low Back Pain: Quasi-Experimental Study

    No full text
    BackgroundLow back pain is a common health problem globally. Based on the duration of pain, it is classified as acute, subacute, or chronic low back pain. Different treatment strategies are available to reduce chronic low back pain. Virtual reality (VR) is a novel approach in back pain rehabilitation. ObjectiveThis study aimed to compare the effects of VR games on chronic low back pain. MethodsThis quasi-experimental study was conducted among 40 patients with chronic low back pain. The data were collected using a nonprobability, convenient sampling technique. Patients visiting the Department of Physiotherapy, Government Services Hospital, Lahore, Pakistan, were recruited and equally divided into 4 groups. Group A received the Reflex Ridge game; group B received the Body Ball game; group C combined the 2 games without back-strengthening exercises; and group D combined the 2 games with back-strengthening exercises. The participants received 8 treatment sessions, with 3 sessions/wk. The outcomes were pre- and posttest measurements of pain intensity, low back disability, and lumbar range of motion. The repeated measurement ANOVA was used for inter- and intragroup comparison, with significance at P≀.05. ResultsThe study comprised a sample of 40 patients with low back pain; 12 (40%) were female and 28 (60%) were male, with a mean age of 37.85 (SD 12.15) years. The pre- and posttest mean pain scores were 7.60 (SD 1.84) and 4.20 (SD 1.62) in group A, 6.60 (SD 1.776) and 5.90 (SD 1.73) in group B, 6.90 (SD 1.73) and 5.40 (SD 1.07) in group C, and 7.10 (SD 1.53) and 3.60 (SD 0.97) in group D, respectively. The mean pain score differences of group D (combining the Reflex Ridge and Body Ball games with back-strengthening exercises) compared to groups A, B, and C were –.60 (P=.76), –2.30 (P<.001), and –1.80 (P=.03), respectively. Regarding the range of motion, the forward lumbar flexion mean differences of group D compared to groups A, B, and C were 3.80 (P=.21), 4.80 (P=.07), and 7.40 (P<.001), respectively. Similarly, the right lateral lumbar flexion mean differences of group D compared to groups A, B, and C were 2.80 (P=.04), 5.20 (P<.001), and 4.80 (P<.001), respectively. The left lateral lumbar flexion mean differences of group D compared to groups A, B, and C were 2.80 (P<.001), 4.80 (P=.02), and 2.20 (P<.001). respectively, showing significant pre- and posttreatment effects. ConclusionsVR exercises had statistically significant effects on improving pain, low back disability, and range of motion in all groups, but the combination of Reflex Ridge and Body Ball games with back-strengthening exercises had dominant effects compared to the other groups. Trial RegistrationIranian Registry of Clinical Trial IRCT20200330046895N1; https://en.irct.ir/trial/4691

    Expanding the Biocatalytic Scope of Enzyme-Loaded Polymeric Hydrogels

    No full text
    In recent years, polymeric hydrogels have appeared promising matrices for enzyme immobilization to design, signify and expand bio-catalysis engineering. Therefore, the development and deployment of polymeric supports in the form of hydrogels and other robust geometries are continuously growing to green the twenty-first-century bio-catalysis. Furthermore, adequately fabricated polymeric hydrogel materials offer numerous advantages that shield pristine enzymes from denaturation under harsh reaction environments. For instance, cross-linking modulation of hydrogels, distinct rheological behavior, tunable surface entities along with elasticity and mesh size, larger surface-volume area, and hydrogels’ mechanical cushioning attributes are of supreme interest makes them the ideal candidate for enzyme immobilization. Furthermore, suitable coordination of polymeric hydrogels with requisite enzyme fraction enables pronounced loading, elevated biocatalytic activity, and exceptional stability. Additionally, the unique catalytic harmony of enzyme-loaded polymeric hydrogels offers numerous applications, such as hydrogels as immobilization matrix, bio-catalysis, sensing, detection and monitoring, tissue engineering, wound healing, and drug delivery applications. In this review, we spotlight the applied perspective of enzyme-loaded polymeric hydrogels with recent and relevant examples. The work also signifies the combined use of multienzyme systems and the future directions that should be attempted in this field
    corecore