234 research outputs found

    Structural Determinants in the Calcitonin Receptor-Like Receptor (Crlr) Important for Cgrp and Adrenomedullin (Am) Receptor Function of Crlr/Receptor-Activity-Modifying Protein (Ramp) 1 and Crlr/Ramp2 Heterodimers

    Get PDF
    Cell surface protein cross-linking, coimmmunoprecipitation, and confocal microscopy identified CRLR/RAMP1-, CRLR/RAMP2-, and calcitonin receptor isotype 2 (CTR2)/RAMP1 heterodimers as CGRP-, AM-, and CGRP/amylin receptors, linked to cAMP production. Along these lines, effects of structural alterations in the N-terminal extracellular domain of the human CRLR on cell surface expression as well as the association with RAMP and CGRP or AM have been investigated

    Direct observation of the spin texture in strongly correlated SmB6 as evidence of the topological Kondo insulator

    Full text link
    The concept of a topological Kondo insulator (TKI) has been brought forward as a new class of topological insulators in which non-trivial surface states reside in the bulk Kondo band gap at low temperature due to the strong spin-orbit coupling [1-3]. In contrast to other three-dimensional (3D) topological insulators (e.g. Bi2Se3), a TKI is truly insulating in the bulk [4]. Furthermore, strong electron correlations are present in the system, which may interact with the novel topological phase. Applying spin- and angle-resolved photoemission spectroscopy (SARPES) to the Kondo insulator SmB6, a promising TKI candidate, we reveal that the surface states of SmB6 are spin polarized, and the spin is locked to the crystal momentum. Counter-propagating states (i.e. at k and -k) have opposite spin polarizations protected by time-reversal symmetry. Together with the odd number of Fermi surfaces of surface states between the 4 time-reversal invariant momenta in the surface Brillouin zone [5], these findings prove, for the first time, that SmB6 can host non-trivial topological surface states in a full insulating gap in the bulk stemming from the Kondo effect. Hence our experimental results establish that SmB6 is the first realization of a 3D TKI. It can also serve as an ideal platform for the systematic study of the interplay between novel topological quantum states with emergent effects and competing order induced by strongly correlated electrons.Comment: 4 figure

    Rifting under steam – how rift magmatism triggers methane venting from sedimentary basins

    Get PDF
    During opening of a new ocean magma intrudes into the surrounding sedimentary basins. Heat provided by the intrusions matures the host rock creating metamorphic aureoles potentially releasing large amounts of hydrocarbons. These hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in sufficient volumes to trigger global warming, e.g. during the Paleocene Eocene Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent complexes observed in seismic data off Norway were previously interpreted as mud volcanoes and the amount of released hydrocarbon was estimated based on this interpretation. Here, we present new geophysical and geochemical data from the Gulf of California suggesting that such mound structures could in fact be edifices constructed by the growth of black-smoker type chimneys rather than mud volcanoes. We have evidence for two buried and one active hydrothermal vent system outside the rift axis. The vent releases several hundred degrees Celsius hot fluids containing abundant methane, mid-ocean-ridge-basalt (MORB)-type helium, and precipitating solids up to 300 m high into the water column. Our observations challenge the idea that methane is emitted slowly from rift-related vents. The association of large amounts of methane with hydrothermal fluids that enter the water column at high pressure and temperature provides an efficient mechanism to transport hydrocarbons into the water column and atmosphere, lending support to the hypothesis that rapid climate change such as during the PETM can be triggered by magmatic intrusions into organic-rich sedimentary basins

    Epithelial calcineurin controls microbiota-dependent intestinal tumor development.

    Get PDF
    Inflammation-associated pathways are active in intestinal epithelial cells (IECs) and contribute to the pathogenesis of colorectal cancer (CRC). Calcineurin, a phosphatase required for the activation of the nuclear factor of activated T cells (NFAT) family of transcription factors, shows increased expression in CRC. We therefore investigated the role of calcineurin in intestinal tumor development. We demonstrate that calcineurin and NFAT factors are constitutively expressed by primary IECs and selectively activated in intestinal tumors as a result of impaired stratification of the tumor-associated microbiota and toll-like receptor signaling. Epithelial calcineurin supports the survival and proliferation of cancer stem cells in an NFAT-dependent manner and promotes the development of intestinal tumors in mice. Moreover, somatic mutations that have been identified in human CRC are associated with constitutive activation of calcineurin, whereas nuclear translocation of NFAT is associated with increased death from CRC. These findings highlight an epithelial cell-intrinsic pathway that integrates signals derived from the commensal microbiota to promote intestinal tumor development.This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grants ZE814/5-1 (S.Z.), BA2863/5-1 (J.F.B.) and CH279/5-1 (T.C.), the European Research Council (ERC) starting grant 336528 (S.Z.), a Postdoctoral Fellowship Award from the Crohn's and Colitis Foundation of America (S.Z.), the European Commission (Marie Curie International Reintegration grant 256363; S.Z.), the DFG Excellence Cluster 'Inflammation at Interfaces' (S.Z. and J.F.B.), the DFG Excellence Cluster 'Center for Regenerative Therapies' (S.Z.); the US National Institutes of Health grants DK044319 (R.S.B.), DK051362 (R.S.B.), DK053056 (R.S.B.) and DK088199 (R.S.B.), the Harvard Digestive Diseases Center (HDDC) grant DK0034854 (R.S.B.), and the AIRC grant IG-14233 (M.E.B.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nm.407

    The Free Energy Landscape of Small Molecule Unbinding

    Get PDF
    The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding
    • …
    corecore