3,367 research outputs found

    Designing citizen science tools for learning: lessons learnt from the iterative development of nQuire

    Get PDF
    This paper reports on a 4-year research and development case study about the design of citizen science tools for inquiry learning. It details the process of iterative pedagogy-led design and evaluation of the nQuire toolkit, a set of web-based and mobile tools scaffolding the creation of online citizen science investigations. The design involved an expert review of inquiry learning and citizen science, combined with user experience studies involving more than 200 users. These have informed a concept that we have termed ‘citizen inquiry’, which engages members of the public alongside scientists in setting up, running, managing or contributing to citizen science projects with a main aim of learning about the scientific method through doing science by interaction with others. A design-based research (DBR) methodology was adopted for the iterative design and evaluation of citizen science tools. DBR was focused on the refinement of a central concept, ‘citizen inquiry’, by exploring how it can be instantiated in educational technologies and interventions. The empirical evaluation and iteration of technologies involved three design experiments with end users, user interviews, and insights from pedagogy and user experience experts. Evidence from the iterative development of nQuire led to the production of a set of interaction design principles that aim to guide the development of online, learning-centred, citizen science projects. Eight design guidelines are proposed: users as producers of knowledge, topics before tools, mobile affordances, scaffolds to the process of scientific inquiry, learning by doing as key message, being part of a community as key message, every visit brings a reward, and value users and their time

    Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1

    Get PDF
    Background: Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD. Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V_L12.3, turnover of soluble mHDx-1 in living cells is blocked. Conclusions/Significance: These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications

    The use of happiness research for public policy

    Get PDF
    Research on happiness tends to follow a "benevolent dictator" approach where politicians pursue people's happiness. This paper takes an antithetic approach based on the insights of public choice theory. First, we inquire how the results of happiness research may be used to improve the choice of institutions. Second, we show that the policy approach matters for the choice of research questions and the kind of knowledge happiness research aims to provide. Third, we emphasize that there is no shortcut to an optimal policy maximizing some happiness indicator or social welfare function since governments have an incentive to manipulate this indicator

    From the Expected to the Desired Future of Passenger Transport

    Get PDF
    Sustainability as an unambiguous policy goal is not a priori secured, as is clearly shown in the transport sector, where the negative externalities are still increasing despite official policies aiming at a reduction of these external costs and at the achievement of a sustainable transport system. To analyse why this is the case, a conceptual model is developed in this paper, in which stakeholders are identified which influence sustainable transport policies. These stakeholders are individuals, the public sector (subdivided into politicians and civil servants), international organizations and pressure groups (car industry, oil industry, car users and environmental groups). It appears that - although it may be assumed that nobody desires an unsustainable future - most incentives and mechanisms in our conceptual model of the decision-making process hamper the achievement of a sustainable transport system. In the second part - by way of empirical test - results of a questionnaire among Dutch transportation experts on the expected and desired future of European passenger transport are concisely discussed, in which the year 2030 is taken as a reference year. It appears that in the expected future the stakeholders largely behave as predicted in the conceptual model. I

    Graphene plasmonics

    Full text link
    Two rich and vibrant fields of investigation, graphene physics and plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics. The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges, from terahertz to the visible, with extremely high speed, low driving voltage, low power consumption and compact sizes. Here we review the field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version available only at publisher's web site

    Eikonal methods applied to gravitational scattering amplitudes

    Full text link
    We apply factorization and eikonal methods from gauge theories to scattering amplitudes in gravity. We hypothesize that these amplitudes factor into an IR-divergent soft function and an IR-finite hard function, with the former given by the expectation value of a product of gravitational Wilson line operators. Using this approach, we show that the IR-divergent part of the n-graviton scattering amplitude is given by the exponential of the one-loop IR divergence, as originally discovered by Weinberg, with no additional subleading IR-divergent contributions in dimensional regularization.Comment: 16 pages, 3 figures; v2: title change and minor rewording (published version); v3: typos corrected in eqs.(3.2),(4.1

    Mitochondrial Haplogroups and Control Region Polymorphisms in Age-Related Macular Degeneration: A Case-Control Study

    Get PDF
    Background: Onset and development of the multifactorial disease age-related macular degeneration (AMD) are highly interrelated with mitochondrial functions such as energy production and free radical turnover. Mitochondrial dysfunction and overproduction of reactive oxygen species may contribute to destruction of the retinal pigment epithelium, retinal atrophy and choroidal neovascularization, leading to AMD. Consequently, polymorphisms of the mitochondrial genome (mtDNA) are postulated to be susceptibility factors for this disease. Previous studies from Australia and the United States detected associations of mitochondrial haplogroups with AMD. The aim of the present study was to test these associations in Middle European Caucasians. Methodology/Principal Findings: Mitochondrial haplogroups (combinations of mtDNA polymorphisms) and mitochondrial CR polymorphisms were analyzed in 200 patients with wet AMD (choroidal neovascularization, CNV), in 66 patients with dry AMD, and in 385 controls from Austria by means of multiplex primer extension analysis and sequencing, respectively. In patients with CNV, haplogroup H was found to be significantly less frequent compared to controls, and haplogroup J showed a trend toward a higher frequency compared to controls. Five CR polymorphisms were found to differ significantly in the two study populations compared to controls, and all, except one (T152C), are linked to those haplogroups. Conclusions/Significance: It can be concluded that haplogroup J is a risk factor for AMD, whereas haplogroup H seems t

    Ecological distribution and population physiology defined by proteomics in a natural microbial community

    Get PDF
    Community proteomics applied to natural microbial biofilms resolves how the physiology of different populations from a model ecosystem change with measured environmental factors in situ.The initial colonists, Leptospirillum Group II bacteria, persist throughout ecological succession and dominate all communities, a pattern that resembles community assembly patterns in some macroecological systems.Interspecies interactions, and not abiotic environmental factors, demonstrate the strongest correlation to physiological changes of Leptospirillum Group II.Environmental niches of subdominant populations seem to be determined by combinations of specific sets of abiotic environmental factors

    TGA2 signaling in response to reactive electrophile species is not dependent on cysteine modification of TGA2

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Reactive electrophile species (RES), including prostaglandins, phytoprostanes and 12-oxo phytodienoic acid (OPDA), activate detoxification responses in plants and animals. However, the pathways leading to the activation of defense reactions related to abiotic or biotic stress as a function of RES formation, accumulation or treatment are poorly understood in plants. Here, the thiol-modification of proteins, including the RES-activated basic region/leucine zipper transcription factor TGA2, was studied. TGA2 contains a single cysteine residue (Cys186) that was covalently modified by reactive cyclopentenones but not required for induction of detoxification genes in response to OPDA or prostaglandin A1. Activation of the glutathione-S-transferase 6 (GST6) promoter was responsive to cyclopentenones but not to unreactive cyclopentanones, including jasmonic acid suggesting that thiol reactivity of RES is important to activate the TGA2-dependent signaling pathway resulting in GST6 activation We show that RES modify thiols in numerous proteins in vivo, however, thiol reactivity alone appears not to be sufficient for biological activity as demonstrated by the failure of several membrane permeable thiol reactive reagents to activate the GST6 promoter.Peer reviewedFinal Published versio
    corecore