We apply factorization and eikonal methods from gauge theories to scattering
amplitudes in gravity. We hypothesize that these amplitudes factor into an
IR-divergent soft function and an IR-finite hard function, with the former
given by the expectation value of a product of gravitational Wilson line
operators. Using this approach, we show that the IR-divergent part of the
n-graviton scattering amplitude is given by the exponential of the one-loop IR
divergence, as originally discovered by Weinberg, with no additional subleading
IR-divergent contributions in dimensional regularization.Comment: 16 pages, 3 figures; v2: title change and minor rewording (published
version); v3: typos corrected in eqs.(3.2),(4.1