2,387 research outputs found

    Test anxiety, working memory, and cognitive performance: Supportive effects of sequential demands

    Get PDF
    Substantial evidence suggests that test anxiety is associated with poor performance in complex tasks. Based on the differentiation of coordinative and sequential demands on working memory (Mayr & Kliegl, 1993), two studies examined the effects of sequential demands on the relationship between test anxiety and cognitive performance. Both studies found that high sequential demands had beneficial effects on the speed and accuracy of the performance of test-anxious participants. It is suggested that the more frequent memory updates associated with high sequential demands may represent external processing aids that compensate for the restricted memory capacity of individuals with high test anxiet

    Cleavage efficiency of the intramembrane protease γ-secretase is reduced by the palmitoylation of a substrate's transmembrane domain

    Get PDF
    The intramembrane protease gamma-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While gamma-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how gamma-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by gamma-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where gamma-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by gamma-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by gamma-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by gamma-secretase. The intramembrane protease gamma-secretase has broad physiological functions. However, a fundamental open question is how gamma-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics and domain swap experiments, this study demonstrates that palmitoylation within the C-terminal half of a substrate's transmembrane domain constitutes a new mechanism that can suppress cleavage by gamma-secretase.imag

    A microglial activity state biomarker panel differentiates FTD-granulin and Alzheimer's disease patients from controls

    Get PDF
    BackgroundWith the emergence of microglia-modulating therapies there is an urgent need for reliable biomarkers to evaluate microglial activation states.MethodsUsing mouse models and human induced pluripotent stem cell-derived microglia (hiMGL), genetically modified to yield the most opposite homeostatic (TREM2-knockout) and disease-associated (GRN-knockout) states, we identified microglia activity-dependent markers. Non-targeted mass spectrometry was used to identify proteomic changes in microglia and cerebrospinal fluid (CSF) of Grn- and Trem2-knockout mice. Additionally, we analyzed the proteome of GRN- and TREM2-knockout hiMGL and their conditioned media. Candidate marker proteins were tested in two independent patient cohorts, the ALLFTD cohort (GRN mutation carriers versus non-carriers), as well as the proteomic data set available from the EMIF-AD MBD study.ResultsWe identified proteomic changes between the opposite activation states in mouse microglia and CSF, as well as in hiMGL cell lysates and conditioned media. For further verification, we analyzed the CSF proteome of heterozygous GRN mutation carriers suffering from frontotemporal dementia (FTD). We identified a panel of six proteins (FABP3, MDH1, GDI1, CAPG, CD44, GPNMB) as potential indicators for microglial activation. Moreover, we confirmed three of these proteins (FABP3, GDI1, MDH1) to be significantly elevated in the CSF of Alzheimer's (AD) patients. Remarkably, each of these markers differentiated amyloid-positive cases with mild cognitive impairment (MCI) from amyloid-negative individuals.ConclusionsThe identified candidate proteins reflect microglia activity and may be relevant for monitoring the microglial response in clinical practice and clinical trials modulating microglial activity and amyloid deposition. Moreover, the finding that three of these markers differentiate amyloid-positive from amyloid-negative MCI cases in the AD cohort suggests that these proteins associate with a very early immune response to seeded amyloid. This is consistent with our previous findings in the Dominantly Inherited Alzheimer's Disease Network (DIAN) cohort, where soluble TREM2 increases as early as 21 years before symptom onset. Moreover, in mouse models for amyloidogenesis, seeding of amyloid is limited by physiologically active microglia further supporting their early protective role. The biological functions of some of our main candidates (FABP3, CD44, GPNMB) also further emphasize that lipid dysmetabolism may be a common feature of neurodegenerative disorders

    Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aggregated haemozoin crystals within malaria-infected erythrocytes confer susceptibility of parasitized cells to a magnetic field. Here the utility of this method for diagnosis of human malaria is evaluated in a malaria-endemic region of Papua New Guinea (PNG).</p> <p>Methods and findings</p> <p>Individuals with <it>Plasmodium falciparum </it>malaria symptoms (n = 55) provided samples for conventional blood smear (CBS) and magnetic deposition microscopy (MDM) diagnosis. Standard Giemsa staining and light microscopy was performed to evaluate all preparations. <it>Plasmodium falciparum </it>parasitaemia observed on MDM slides was consistently higher than parasitaemia observed by (CBS) for ring (CBS = 2.6 vs. MDM = 3.4%; t-test P-value = 0.13), trophozoite (CBS = 0.5 vs. MDM = 1.6%; t-test P-value = 0.01), schizont (CBS = 0.003 vs. MDM = 0.1%; t-test P-value = 0.08) and gametocyte (CBS = 0.001 vs. MDM = 0.4%; t-test P-value = 0.0002) parasitaemias. Gametocyte prevalence determined by CBS compared to MDM increased from 7.3% to 45%, respectively.</p> <p>Conclusion</p> <p>MDM increased detection sensitivity of <it>P. falciparum</it>-infected, haemozoin-containing erythrocytes from infected humans while maintaining detection of ring-stage parasites. Gametocyte prevalence five-fold higher than observed by CBS suggests higher malaria transmission potential in PNG endemic sites compared to previous estimates.</p

    BACE2 distribution in major brain cell types and identification of novel substrates

    Get PDF
    β-Site APP-cleaving enzyme 1 (BACE1) inhibition is considered one of the most promising therapeutic strategies for Alzheimer's disease, but current BACE1 inhibitors also block BACE2. As the localization and function of BACE2 in the brain remain unknown, it is difficult to predict whether relevant side effects can be caused by off-target inhibition of BACE2 and whether it is important to generate BACE1-specific inhibitors. Here, we show that BACE2 is expressed in discrete subsets of neurons and glia throughout the adult mouse brain. We uncover four new substrates processed by BACE2 in cultured glia: vascular cell adhesion molecule 1, delta and notch-like epidermal growth factor-related receptor, fibroblast growth factor receptor 1, and plexin domain containing 2. Although these substrates were not prominently cleaved by BACE2 in healthy adult mice, proinflammatory TNF induced a drastic increase in BACE2-mediated shedding of vascular cell adhesion molecule 1 in CSF. Thus, although under steady-state conditions the effect of BACE2 cross-inhibition by BACE1-directed inhibitors is rather subtle, it is important to consider that side effects might become apparent under physiopathological conditions that induce TNF expression

    Reactivated endogenous retroviruses promote protein aggregate spreading

    Get PDF
    Endogenous retroviruses, or genomic relics of ancient viral infection, have been associated with certain neurodegenerative diseases. Here, Liu et al. report a pathway by which reactivated viral gene products contribute to intercellular protein aggregate spreading. Prion-like spreading of protein misfolding is a characteristic of neurodegenerative diseases, but the exact mechanisms of intercellular protein aggregate dissemination remain unresolved. Evidence accumulates that endogenous retroviruses, remnants of viral germline infections that are normally epigenetically silenced, become upregulated in neurodegenerative diseases such as amyotrophic lateral sclerosis and tauopathies. Here we uncover that activation of endogenous retroviruses affects prion-like spreading of proteopathic seeds. We show that upregulation of endogenous retroviruses drastically increases the dissemination of protein aggregates between cells in culture, a process that can be inhibited by targeting the viral envelope protein or viral protein processing. Human endogenous retrovirus envelopes of four different clades also elevate intercellular spreading of proteopathic seeds, including pathological Tau. Our data support a role of endogenous retroviruses in protein misfolding diseases and suggest that antiviral drugs could represent promising candidates for inhibiting protein aggregate spreading

    Identification of membrane proteins regulated by ADAM15 by SUSPECS proteomics

    Get PDF
    ADAM15 is a member of the disintegrin-metalloproteinase family of sheddases, which plays a role in several biological processes including cartilage homeostasis. In contrast with well-characterized ADAMs, such as the canonical sheddases ADAM17 and ADAM10, little is known about substrates of ADAM15 or how the enzyme exerts its biological functions. Herein, we used surface-spanning enrichment with click-sugars (SUSPECS) proteomics to identify ADAM15 substrates and/or proteins regulated by the proteinase at the cell surface of chondrocyte-like cells. Silencing of ADAM15 by siRNAs significantly altered membrane levels of 13 proteins, all previously not known to be regulated by ADAM15. We used orthogonal techniques to validate ADAM15 effects on 3 of these proteins which have known roles in cartilage homeostasis. This confirmed that ADAM15-silencing increased cell surface levels of the programmed cell death 1 ligand 2 (PDCD1LG2) and reduced cell surface levels of vasorin and the sulfate transporter SLC26A2 through an unknown post-translational mechanism. The increase of PDCD1LG2 by ADAM15 knockdown, a single-pass type I transmembrane protein, suggested it could be a proteinase substrate. However, shed PDCD1LG2 could not be detected even by a data-independent acquisition mass spectrometry, a highly sensitive method for identification and quantification of proteins in complex protein samples, suggesting that ADAM15 regulates PDCD1LG2 membrane levels by a mechanism different from ectodomain shedding

    Quantitative Proteomics Reveals That ADAM15 Can Have Proteolytic-Independent Functions in the Steady State

    Get PDF
    A disintegrin and metalloproteinase 15 (ADAM15) is a member of the ADAM family of sheddases. Its genetic ablation in mice suggests that ADAM15 plays an important role in a wide variety of biological functions, including cartilage homeostasis. Nevertheless, while the substrate repertoire of other members of the ADAM family, including ADAM10 and ADAM17, is largely established, little is known about the substrates of ADAM15 and how it exerts its biological functions. Herein, we used unbiased proteomics to identify ADAM15 substrates and proteins regulated by the proteinase in chondrocyte-like HTB94 cells. ADAM15 silencing did not induce major changes in the secretome composition of HTB94 cells, as revealed by two different proteomic approaches. Conversely, overexpression of ADAM15 remodeled the secretome, with levels of several secreted proteins being altered compared to GFP-overexpressing controls. However, the analysis did not identify potential substrates of the sheddase, i.e., transmembrane proteins released by ADAM15 in the extracellular milieu. Intriguingly, secretome analysis and immunoblotting demonstrated that ADAM15 overexpression increased secreted levels of tissue inhibitor of metalloproteinases 3 (TIMP-3), a major regulator of extracellular matrix turnover. An inactive form of ADAM15 led to a similar increase in the inhibitor, indicating that ADAM15 regulates TIMP-3 secretion by an unknown mechanism independent of its catalytic activity. In conclusion, high-resolution quantitative proteomics of HTB94 cells manipulated to have increased or decreased ADAM15 expression did not identify canonical substrates of the proteinase in the steady state, but it revealed that ADAM15 can modulate the secretome in a catalytically-independent manner

    Factors associated with ultrasound-aided detection of suboptimal fetal growth in a malaria-endemic area in Papua New Guinea

    Get PDF
    BACKGROUND: Fetal growth restriction (FGR) is associated with increased infant mortality rates and ill-health in adulthood. Evaluation of fetal growth requires ultrasound. As a result, ultrasound-assisted evaluations of causes of FGR in malaria-endemic developing countries are rare. We aimed to determine factors associated with indicators of abnormal fetal growth in rural lowland Papua New Guinea (PNG). METHODS: Weights and growth of 671 ultrasound-dated singleton pregnancies (<25 gestational weeks) were prospectively monitored using estimated fetal weights and birthweights. Maternal nutritional status and haemoglobin levels were assessed at enrolment, and participants were screened for malaria on several occasions. FGR was suspected upon detection of an estimated fetal weight or birthweight <10(th) centile (small-for-gestational age) and/or low fetal weight gain, defined as a change in weight z-score in the first quartile. Factors associated with fetal weight and fetal weight gain were additionally assessed by evaluating differences in weight z-scores and change in weight z-scores. Log-binomial and linear mixed effect models were used to determine factors associated with indicators of FGR. RESULTS: SGA and low weight gain were detected in 48.3% and 37.0% of pregnancies, respectively. Of participants, 13.8%, 21.2%, and 22.8% had a low mid-upper arm circumference (MUAC, <22 cms), short stature (<150 cms) and anaemia (haemoglobin <90 g/L) at first antenatal visit. 24.0% (161/671) of women had at least one malaria infection detected in peripheral blood. A low MUAC (adjusted risk ratio [aRR] 1.51, 95% CI 1.29, 1.76, P < 0.001), short stature (aRR 1.27, 95% CI 1.04, 1.55, P = 0.009), and anaemia (aRR 1.27, 95% CI 1.06, 1.51, P = 0.009) were associated with SGA, and a low body mass index was associated with low fetal weight gain (aRR 2.10, 95% CI 1.62, 2.71, P < 0.001). Additionally, recent receipt of intermittent preventive treatment in pregnancy was associated with increased weight z-scores, and anaemia with reduced change in weight z-scores. Malaria infection was associated with SGA on crude but not adjusted analyses (aRR 1.13, 95% CI 0.95, 1.34, P = 0.172). CONCLUSION: Macronutrient undernutrition and anaemia increased the risk of FGR. Antenatal nutritional interventions and malaria prevention could improve fetal growth in PNG

    Safety and efficacy after switch to a saquinavir-containing antiretroviral regimen in protease inhibitor pretreated HIV-positive patients

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>The RAINBOW survey is a multinational observational study assessing the tolerability and efficacy of ritonavir-boosted saquinavir (SQV/r), using the 500 mg film-coated SQV formulation, in routine clinical practice. This analysis presents data from the German subgroup of protease inhibitor (PI)-pretreated, but SQV-naïve patients.</p> <p>Methods</p> <p>Multicenter, prospective, open-label, 48 week cohort study. Efficacy assessments included the proportion of patients with HIV-1 RNA < 50 and < 400 copies/mL and changes in CD4 cell count from baseline to week 48. Tolerability assessments included changes in liver enzymes and lipid levels from baseline to week 48.</p> <p>Results</p> <p>A total of 426 patients were included in the analysis. The proportion of patients with HIV RNA levels < 50 copies/mL at week 48 was 60.3% (compared with 31.7% at switch to SQV/r) (intent-to-treat, last observation carried forward analysis). After 48 weeks, median CD4 count increased by +61 cells/mm<sup>3 </sup>from baseline (p < 0.01) and 60.3% of patients achieved HIV-1 RNA < 50 copies/mL. Median changes in fasting triglyceride levels (stratified according to baseline level) at week 48 were: +14 mg/dL (IQR -8; 57) for patients with baseline triglyceride < 200 mg/dL; -50 mg/dL (IQR -139; 0) for baseline triglyceride 200-750 mg/dL, and -656 mg/dL (IQR 1024; 0) for baseline triglyceride > 750 mg/dL (p < 0.01 for all). Median changes in fasting total cholesterol (TC) levels (stratified according to baseline) were +16 mg/dL (IQR -3; 43) for patients with baseline TC < 200 mg/dL (p < 0.01), -3 mg/dL (IQR -25; 25) for baseline TC 200-300 mg/dL (p = 0.4), and -47 mg/dL (IQR -87; -4) for baseline TC > 300 mg/dL (p < 0.01). No significant changes in liver enzymes or bilirubin were observed. SQV treatment was discontinued in 22% of patients, 6% due to side effects.</p> <p>Conclusions</p> <p>These data confirm the efficacy and tolerability of SQV/r in PI-experienced, SQV-naïve patients treated in a real-life clinical setting. Of particular relevance are the improvements in triglycerides and TC levels observed in patients with baseline grade III-IV elevations.</p
    • …
    corecore