2,760 research outputs found

    Population Cancer Risks Associated with Coal Mining: A Systematic Review

    Get PDF
    BACKGROUND: Coal is produced across 25 states and provides 42% of US energy. With production expected to increase 7.6% by 2035, proximate populations remain at risk of exposure to carcinogenic coal products such as silica dust and organic compounds. It is unclear if population exposure is associated with increased risk, or even which cancers have been studied in this regard. METHODS: We performed a systematic review of English-language manuscripts published since 1980 to determine if coal mining exposure was associated with increased cancer risk (incidence and mortality). RESULTS: Of 34 studies identified, 27 studied coal mining as an occupational exposure (coal miner cohort or as a retrospective risk factor) but only seven explored health effects in surrounding populations. Overall, risk assessments were reported for 20 cancer site categories, but their results and frequency varied considerably. Incidence and mortality risk assessments were: negative (no increase) for 12 sites; positive for 1 site; and discordant for 7 sites (e.g. lung, gastric). However, 10 sites had only a single study reporting incidence risk (4 sites had none), and 11 sites had only a single study reporting mortality risk (2 sites had none). The ecological study data were particularly meager, reporting assessments for only 9 sites. While mortality assessments were reported for each, 6 had only a single report and only 2 sites had reported incidence assessments. CONCLUSIONS: The reported assessments are too meager, and at times contradictory, to make definitive conclusions about population cancer risk due to coal mining. However, the preponderance of this and other data support many of Hill\u27s criteria for causation. The paucity of data regarding population exposure and risk, the widespread geographical extent of coal mining activity, and the continuing importance of coal for US energy, warrant further studies of population exposure and risk

    Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas

    Full text link
    We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations (atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed for probe volumes containing more than 10,000 atoms. Measuring the level of suppression provides sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly correlated many-body systems.Comment: minor edit: fixed technical problem with arxiv's processing of .eps figur

    Novel genes dramatically alter regulatory network topology in amphioxus

    Get PDF
    Domain rearrangements in the innate immune network of amphioxus suggests that domain shuffling has shaped the evolution of immune systems

    Digital three-dimensional imaging techniques provide new analytical pathways for malacological research

    Get PDF
    Author Posting. © BioOne Complete, 2019. This article is posted here by permission of BioOne Complete for personal use, not for redistribution. The definitive version was published in Ziegler, A., Bock, C., Ketten, D. R., Mair, R. W., Mueller, S., Nagelmann, N., Pracht, E. D., & Schroeder, L. Digital three-dimensional imaging techniques provide new analytical pathways for malacological research. American Malacological Bulletin, 36(2), (2018):248-273, doi:10.4003/006.036.0205.Research on molluscan specimens is increasingly being carried out using high-throughput molecular techniques. Due to their efficiency, these technologies have effectively resulted in a strong bias towards genotypic analyses. Therefore, the future large-scale correlation of such data with the phenotype will require a significant increase in the output of morphological studies. Three-dimensional (3D) scanning techniques such as magnetic resonance imaging (MRI) or computed tomography (CT) can achieve this goal as they permit rapidly obtaining digital data non-destructively or even entirely non-invasively from living, fixed, and fossil samples. With a large number of species and a relatively complex morphology, the Mollusca would profit from a more widespread application of digital 3D imaging techniques. In order to provide an overview of the capacity of various MRI and CT techniques to visualize internal and external structures of molluscs, more than twenty specimens ranging in size from a few millimeters to well over one meter were scanned in vivo as well as ex vivo. The results show that all major molluscan organ systems can be successfully visualized using both MRI and CT. The choice of a suitable imaging technique depends primarily on the specimen's life condition, its size, the required resolution, and possible invasiveness of the approach. Apart from visual examples derived from more than two dozen scans, the present article provides guidelines and best practices for digital 3D imaging of a broad range of molluscan taxa. Furthermore, a comprehensive overview of studies that previously have employed MRI or CT techniques in malacological research is given.We would like to express our gratitude to Adam J. Baldinger, Thomas Bartolomaeus, Patrick Beckers, Rüdiger Bieler, Roger T. Hanlon, Carsten Lüter, Iliana Ruiz-Cooley, Tom Schiøtte, Andreas Schmidt-Rhaesa, and Sid Staubach for help with specimen collection or for providing access to museum material. Cornelius Faber, Julia Koch, Tony Stöcker, and W. Caroline West kindly facilitated use of scanning systems. We would also like to thank Julie Arruda, Scott Cramer, Jörg Döpfert, Charlotte Eymann, Bastian Maus, Malte Ogurreck, Christina L. Sagorny, Gillian Trombke, and Christopher Witte for support with data acquisition and analysis. We are particularly grateful to Elizabeth K. Shea for inviting the present contribution and for her extensive commentary on the manuscript. We also thank two anonymous reviewers for their helpful criticisms. Funding for this study was provided by the Ocean Life Institute, the Office of Naval Research, the Seaver Institute, and the Deutsche Forschungsgemeinschaft (INST 217/849-1 FUGG)

    The Role of Self- and Informant-Reports on Symptoms and Impairments in the Clinical Evaluation of Adult ADHD

    Get PDF
    Little is known about which clinical features may aid the differentiation between attention deficit hyperactivity disorder (ADHD) and other clinical conditions. This study seeks to determine the role of self- and informant reports on symptoms and impairments in the clinical evaluation of adult ADHD and explore their association with objective neuropsychological test performance by examining data of 169 outpatients referred for a diagnostic evaluation of adult ADHD. Participants were assigned either to an ADHD group (ADHD, n = 73) or one of two clinical comparison groups, depending on whether they show indications (Clinical Comparison Group, CCG, n = 53) or no indications (Clinical Comparison Group—Not Diagnosed, CCG-ND, n = 43) of psychiatric disorders other than ADHD. All participants and their informants completed a set of questionnaires. Compared to the CCG-ND, the ADHD group obtained significantly higher scores on ADHD symptoms, impulsivity, cognitive deficits, and anxiety. Compared to the CCG, the ADHD group scored significantly higher on ADHD symptoms but lower on depression. Further regression analyses revealed that self- and informant reports failed to predict neuropsychological test performance. Self- and informant reported information may be distinct features and do not correspond to results of objective neuropsychological testing

    Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime

    Get PDF
    We study the motion of test particles and electromagnetic waves in the Kerr-Newman-Taub-NUT spacetime in order to elucidate some of the effects associated with the gravitomagnetic monopole moment of the source. In particular, we determine in the linear approximation the contribution of this monopole to the gravitational time delay and the rotation of the plane of the polarization of electromagnetic waves. Moreover, we consider "spherical" orbits of uncharged test particles in the Kerr-Taub-NUT spacetime and discuss the modification of the Wilkins orbits due to the presence of the gravitomagnetic monopole.Comment: 12 pages LaTeX iopart style, uses PicTex for 1 Figur

    Incremental value of high-sensitive troponin T in addition to the revised cardiac index for peri-operative risk stratification in non-cardiac surgery

    Get PDF
    Aims We aimed to evaluate the incremental value of high-sensitive troponin T (hsTnT) for risk prediction prior to non-cardiac surgery in comparison with the established revised cardiac index. Methods and results In this prospective, international multicentre observational study, 979 patients prior to non-cardiac surgery were enrolled. The endpoints were in-hospital mortality, the combination of death, acute myocardial infarction, cardiac arrest, cardio-pulmonary resuscitation, and acute decompensated heart failure. Twenty-five patients (2.6%) deceased and 36 (3.7%) of the patients experienced the combined endpoint. Cardiac markers were elevated in those patients who died when compared with survivors (hsTnT: 21 ng/L vs. 7 ng/L; P < 0.001; NT-proBNP: 576 pg/mL vs. 166 pg/mL; P < 0.001). Applying a cut-off for hsTnT of 14 ng/L and for NT-proBNP of 300 pg/mL, those patients with elevated hsTnT had a mortality of 6.9 vs. 1.2% (P < 0.001) and with elevated NT-proBNP 4.8 vs. 1.4% (P = 0.002). The highest AUC of the ROC curve was found for hsTnT as a predictor for mortality of 0.809. In a multivariate Cox regression analyses, hsTnT was the strongest independent predictor for the combined endpoint [HR 2.6 (95% CI: 1.3-5.3); P = 0.01]. Conclusion High-sensitive troponin T provides strong prognostic information in patients undergoing non-cardiac surgery incremental to the widely accepted revised cardiac inde

    Neuropsychological functioning of individuals at clinical evaluation of adult ADHD

    Get PDF
    OBJECTIVES: Numerous studies showed that adults with attention deficit hyperactivity disorder (ADHD) suffer from impairments in a range of cognitive functions when compared to healthy controls. However, only little is known about the neuropsychological functions when compared to various clinical control groups and whether a distinct neuropsychological profile can be identified for adult ADHD. METHOD: This retrospective study examined data of 199 outpatients referred for clinical evaluation of adult ADHD, allocated either to an ADHD group (n = 78) or to one of two clinical comparison groups, depending on whether they show indications (n = 71) or no indications (n = 50) for the presence of psychiatric disorders other than ADHD. All individuals performed a comprehensive neuropsychological test battery. RESULTS: Data analysis revealed impairments in a range of cognitive functions in a substantial number of patients of all three groups. However, profiles of neuropsychological impairments were similar between groups. Furthermore, significant small- to medium-sized correlations between basic and higher-order cognitive functions were revealed in the ADHD group and the clinical comparison group with indications for psychiatric disorders other than ADHD. CONCLUSION: Neuropsychological impairments are prominent in psychiatric outpatients seeking a clinical evaluation of adult ADHD but are not specific for ADHD. It is concluded that neuropsychological test performance may have limited incremental value to support the psychiatric differential diagnosis. Furthermore, a clinical trajectory may need to take into account that deficits in a range of higher-order cognitive functions can be substantially explained by deficits in basic cognitive functions

    STED-FLCS:An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics

    Get PDF
    Heterogeneous diffusion dynamics of molecules play an important role in many cellular signaling events, such as of lipids in plasma membrane bioactivity. However, these dynamics can often only be visualized by single-molecule and super-resolution optical microscopy techniques. Using fluorescence lifetime correlation spectroscopy (FLCS, an extension of fluorescence correlation spectroscopy, FCS) on a super-resolution stimulated emission depletion (STED) microscope, we here extend previous observations of nanoscale lipid dynamics in the plasma membrane of living mammalian cells. STED-FLCS allows an improved determination of spatiotemporal heterogeneity in molecular diffusion and interaction dynamics via a novel gated detection scheme, as demonstrated by a comparison between STED-FLCS and previous conventional STED-FCS recordings on fluorescent phosphoglycerolipid and sphingolipid analogues in the plasma membrane of live mammalian cells. The STED-FLCS data indicate that biophysical and biochemical parameters such as the affinity for molecular complexes strongly change over space and time within a few seconds. Drug treatment for cholesterol depletion or actin cytoskeleton depolymerization not only results in the already previously observed decreased affinity for molecular interactions but also in a slight reduction of the spatiotemporal heterogeneity. STED-FLCS specifically demonstrates a significant improvement over previous gated STED-FCS experiments and with its improved spatial and temporal resolution is a novel tool for investigating how heterogeneities of the cellular plasma membrane may regulate biofunctionality

    Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants

    Get PDF
    Recombinant adeno-associated virus (AAV) vectors are one of the most widely used gene transfer systems in research and clinical trials. AAV can transduce a wide range of biological tissues, however to date, there has been no investigation on targeted AAV transduction of the enteric nervous system (ENS). Here, we examined the efficiency, tropism, spread, and immunogenicity of AAV transduction in the ENS. Rats received direct injections of various AAV serotypes expressing green fluorescent protein (GFP) into the descending colon. AAV serotypes tested included; AAV 1, 2, 5, 6, 8, or 9 and the AAV2 and AAV8 capsid mutants, AAV2-Y444F, AAV2-tripleY-F, AAV2-tripleY-F+T-V, AAV8-Y733F, and AAV8-doubeY-F+T-V. Transduction, as determined by GFP-positive cells, occurred in neurons and enteric glia within the myenteric and submucosal plexuses of the ENS. AAV6 and AAV9 showed the highest levels of transduction within the ENS. Transduction efficiency scaled with titer and time, was translated to the murine ENS, and produced no vector-related immune response. A single injection of AAV into the colon covered an area of ~47 mm(2). AAV9 primarily transduced neurons, while AAV6 transduced enteric glia and neurons. This is the first report on targeted AAV transduction of neurons and glia in the ENS
    • …
    corecore