84 research outputs found

    Video synthesis from Intensity and Event Frames

    Get PDF
    Event cameras, neuromorphic devices that naturally respond to brightness changes, have multiple advantages with respect to traditional cameras. However, the difficulty of applying traditional computer vision algorithms on event data limits their usability. Therefore, in this paper we investigate the use of a deep learning-based architecture that combines an initial grayscale frame and a series of event data to estimate the following intensity frames. In particular, a fully-convolutional encoder-decoder network is employed and evaluated for the frame synthesis task on an automotive event-based dataset. Performance obtained with pixel-wise metrics confirms the quality of the images synthesized by the proposed architecture

    Remote Sensing of Ploidy Level in Quaking Aspen (Populus Tremuloides Michx.)

    Get PDF
    Ploidy level in plants may influence ecological functioning, demography and response to climate change. However, measuring ploidy level typically requires intensive cell or molecular methods. We map ploidy level variation in quaking aspen, a dominant North American tree species that can be diploid or triploid and that grows in spatially extensive clones. We identify the predictors and spatial scale of ploidy level variation using a combination of genetic and ground‐based and airborne remote sensing methods. We show that ground‐based leaf spectra and airborne canopy spectra can both classify aspen by ploidy level with a precision‐recall harmonic mean of 0.75–0.95 and Cohen\u27s kappa of c. 0.6–0.9. Ground‐based bark spectra cannot classify ploidy level better than chance. We also found that diploids are more common on higher elevation and steeper sites in a network of forest plots in Colorado, and that ploidy level distribution varies at subkilometer spatial scales. Synthesis. Our proof‐of‐concept study shows that remote sensing of ploidy level could become feasible in this tree species. Mapping ploidy level across landscapes could provide insights into the genetic basis of species\u27 responses to climate change

    Semi-Dense 3D Reconstruction with a Stereo Event Camera

    Full text link
    Event cameras are bio-inspired sensors that offer several advantages, such as low latency, high-speed and high dynamic range, to tackle challenging scenarios in computer vision. This paper presents a solution to the problem of 3D reconstruction from data captured by a stereo event-camera rig moving in a static scene, such as in the context of stereo Simultaneous Localization and Mapping. The proposed method consists of the optimization of an energy function designed to exploit small-baseline spatio-temporal consistency of events triggered across both stereo image planes. To improve the density of the reconstruction and to reduce the uncertainty of the estimation, a probabilistic depth-fusion strategy is also developed. The resulting method has no special requirements on either the motion of the stereo event-camera rig or on prior knowledge about the scene. Experiments demonstrate our method can deal with both texture-rich scenes as well as sparse scenes, outperforming state-of-the-art stereo methods based on event data image representations.Comment: 19 pages, 8 figures, Video: https://youtu.be/Qrnpj2FD1e

    Exploring cognitive and biological correlates of sleep quality and their potential links with Alzheimer's disease (ALFASleep project): protocol for an observational study

    Full text link
    The growing worldwide prevalence of Alzheimer's disease (AD) and the lack of effective treatments pose a dire medical challenge. Sleep disruption is also prevalent in the ageing population and is increasingly recognised as a risk factor and an early sign of AD. The ALFASleep project aims to characterise sleep with subjective and objective measurements in cognitively unimpaired middle/late middle-aged adults at increased risk of AD who are phenotyped with fluid and neuroimaging AD biomarkers. This will contribute to a better understanding of the pathophysiological mechanisms linking sleep with AD, thereby paving the way for the development of non-invasive biomarkers and preventive strategies targeting sleep.We will invite 200 participants enrolled in the ALFA+ (for ALzheimer and FAmilies) prospective observational study to join the ALFASleep study. ALFA+ participants are cognitively unimpaired middle-aged/late middle-aged adults who are followed up every 3 years with a comprehensive set of evaluations including neuropsychological tests, blood and cerebrospinal fluid (CSF) sampling, and MRI and positron emission tomography acquisition. ALFASleep participants will be additionally characterised with actigraphy and CSF-orexin-A measurements, and a subset (n=90) will undergo overnight polysomnography. We will test associations of sleep measurements and CSF-orexin-A with fluid biomarkers of AD and glial activation, neuroimaging outcomes and cognitive performance. In case we found any associations, we will test whether changes in AD and/or glial activation markers mediate the association between sleep and neuroimaging or cognitive outcomes and whether sleep mediates associations between CSF-orexin-A and AD biomarkers.The ALFASleep study protocol has been approved by the independent Ethics Committee Parc de Salut Mar, Barcelona (2018/8207/I). All participants have signed a written informed consent before their inclusion (approved by the same ethics committee). Study findings will be presented at national and international conferences and submitted for publication in peer-reviewed journals.NCT04932473.© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ

    Exploring cognitive and biological correlates of sleep quality and their potential links with Alzheimer's disease (ALFASleep project): protocol for an observational study

    Get PDF
    INTRODUCTION: The growing worldwide prevalence of Alzheimer's disease (AD) and the lack of effective treatments pose a dire medical challenge. Sleep disruption is also prevalent in the ageing population and is increasingly recognised as a risk factor and an early sign of AD. The ALFASleep project aims to characterise sleep with subjective and objective measurements in cognitively unimpaired middle/late middle-aged adults at increased risk of AD who are phenotyped with fluid and neuroimaging AD biomarkers. This will contribute to a better understanding of the pathophysiological mechanisms linking sleep with AD, thereby paving the way for the development of non-invasive biomarkers and preventive strategies targeting sleep. METHODS AND ANALYSIS: We will invite 200 participants enrolled in the ALFA+ (for ALzheimer and FAmilies) prospective observational study to join the ALFASleep study. ALFA+ participants are cognitively unimpaired middle-aged/late middle-aged adults who are followed up every 3 years with a comprehensive set of evaluations including neuropsychological tests, blood and cerebrospinal fluid (CSF) sampling, and MRI and positron emission tomography acquisition. ALFASleep participants will be additionally characterised with actigraphy and CSF-orexin-A measurements, and a subset (n=90) will undergo overnight polysomnography. We will test associations of sleep measurements and CSF-orexin-A with fluid biomarkers of AD and glial activation, neuroimaging outcomes and cognitive performance. In case we found any associations, we will test whether changes in AD and/or glial activation markers mediate the association between sleep and neuroimaging or cognitive outcomes and whether sleep mediates associations between CSF-orexin-A and AD biomarkers. ETHICS AND DISSEMINATION: The ALFASleep study protocol has been approved by the independent Ethics Committee Parc de Salut Mar, Barcelona (2018/8207/I). All participants have signed a written informed consent before their inclusion (approved by the same ethics committee). Study findings will be presented at national and international conferences and submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04932473

    Identification of Cellular Infiltrates during Early Stages of Brain Inflammation with Magnetic Resonance Microscopy

    Get PDF
    A comprehensive view of brain inflammation during the pathogenesis of autoimmune encephalomyelitis can be achieved with the aid of high resolution non-invasive imaging techniques such as microscopic magnetic resonance imaging (μMRI). In this study we demonstrate the benefits of cryogenically-cooled RF coils to produce μMRI in vivo, with sufficient detail to reveal brain pathology in the experimental autoimmune encephalomyelitis (EAE) model. We could visualize inflammatory infiltrates in detail within various regions of the brain, already at an early phase of EAE. Importantly, this pathology could be seen clearly even without the use of contrast agents, and showed excellent correspondence with conventional histology. The cryogenically-cooled coil enabled the acquisition of high resolution images within short scan times: an important practical consideration in conducting animal experiments. The detail of the cellular infiltrates visualized by in vivo μMRI allows the opportunity to follow neuroinflammatory processes even during the early stages of disease progression. Thus μMRI will not only complement conventional histological examination but will also enable longitudinal studies on the kinetics and dynamics of immune cell infiltration

    Effects of Wolves on Elk and Cattle Behaviors: Implications for Livestock Production and Wolf Conservation

    Get PDF
    BACKGROUND: In many areas, livestock are grazed within wolf (Canis lupus) range. Predation and harassment of livestock by wolves creates conflict and is a significant challenge for wolf conservation. Wild prey, such as elk (Cervus elaphus), perform anti-predator behaviors. Artificial selection of cattle (Bos taurus) might have resulted in attenuation or absence of anti-predator responses, or in erratic and inconsistent responses. Regardless, such responses might have implications on stress and fitness. METHODOLOGY/PRINCIPAL FINDINGS: We compared elk and cattle anti-predator responses to wolves in southwest Alberta, Canada within home ranges and livestock pastures, respectively. We deployed satellite- and GPS-telemetry collars on wolves, elk, and cattle (n = 16, 10 and 78, respectively) and measured seven prey response variables during periods of wolf presence and absence (speed, path sinuosity, time spent head-up, distance to neighboring animals, terrain ruggedness, slope and distance to forest). During independent periods of wolf presence (n = 72), individual elk increased path sinuosity (Z = -2.720, P = 0.007) and used more rugged terrain (Z = -2.856, P = 0.004) and steeper slopes (Z = -3.065, P = 0.002). For cattle, individual as well as group behavioral analyses were feasible and these indicated increased path sinuosity (Z = -2.720, P = 0.007) and decreased distance to neighbors (Z = -2.551, P = 0.011). In addition, cattle groups showed a number of behavioral changes concomitant to wolf visits, with variable direction in changes. CONCLUSIONS/SIGNIFICANCE: Our results suggest both elk and cattle modify their behavior in relation to wolf presence, with potential energetic costs. Our study does not allow evaluating the efficacy of anti-predator behaviors, but indicates that artificial selection did not result in their absence in cattle. The costs of wolf predation on livestock are often compensated considering just the market value of the animal killed. However, society might consider refunding some additional costs (e.g., weight loss and reduced reproduction) that might be associated with the changes in cattle behaviors that we documented

    Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases

    Get PDF
    The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (A?). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer’s disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that A? is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of A? in the glia limitans in Alzheimer’s disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of A?. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance

    Molecular neuroimaging in rodents: assessing receptor expression and function

    Full text link
    Multimodal non-invasive neuroimaging in rodents constitutes an attractive tool for studying neurobiological processes in vivo. At present, imaging studies of brain anatomy and function as well as the investigation of structure-function relationships belong to the standard repertoire of neuroscientists. Molecular imaging adds a new perspective. The mapping of the receptor distribution and receptor occupancy can nowadays be complemented by specific readouts of receptor function either by visualizing the activity of signaling pathways or mapping the physiological consequences of receptor stimulation. Molecular information is obtained through the use of imaging probes that combine a target-specific ligand with a reporter moiety that generates a signal that can be detected from outside the body. For imaging probes targeting the central nervous system, penetration of the intact blood-brain barrier constitutes a major hurdle. Molecular imaging generates specific information and therefore has a large potential for disease phenotyping (diagnostics), therapy development and monitoring of treatment response. Molecular imaging is still in its infancy and major developments in imaging technology, probe design and data analysis are required in order to make an impact. Rodent molecular neuroimaging will play an important role in the development of these tools
    corecore