27 research outputs found
Optical properties of high quality Cu2ZnSnSe4 thin films
Cu2ZnSnSe4 thin films, fabricated on bare or molybdenum coated glass substrates by magnetron sputtering and selenisation, were studied by a range of techniques. Photoluminescence spectra reveal an excitonic peak and two phonon replicas of a donor-acceptor pair (DAP) recombination. Its acceptor and donor ionisation energies are 27 and 7 meV, respectively. This demonstrates that high-quality Cu2ZnSnSe4 thin films can be fabricated. An experimental value for the longitudinal optical phonon energy of 28 meV was estimated. The band gap energy of 1.01 eV at room temperature was determined using optical absorption spectr
Π‘Π²Π΅ΡΠΎΠΈΠ·Π»ΡΡΠ°ΡΡΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½Π΅ΡΡΠ΅Ρ ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ
The two triple-layered SiO2 /SiNx /SiO2Β structures with Si-rich and N-rich silicon nitride active layer were fabricated on p-type Si-substrates by chemical vapour deposition. The SiNxΒ layer of different composition (x = 0.9 and x = 1.4) was obtained by changing the ratio of the SiH2 Cl2 /NH3 flow rates during deposition of a silicon nitride active layer (8/1 and 1/8, respectively). The spectroscopic ellipsometry and photoluminescence (PL) measurements showed that the refractive index, the absorbance and luminescence properties depend on a chemical composition of silicon nitride layers. The structures with Si-rich and N-rich SiNxΒ active layers emit in the red (1.9 eV) and blue (2.6 eV) spectral ranges, respectively. The PL intensities of different structures are comparable. The rapid thermal annealing results in the intensity decrease and in the PL spectra narrowing in the case of SiN1,4 active layer, whereas the increase in the emission intensity and the PL spectra broadening are observed in the case of the annealed sample with a SiN0,9 active layer. The PL origin and the effect of annealing treatment have been discussed, taking into account the band tail mechanism of radiative recombination. Multilayered (SiO2 /SiNx )n /Si structures are of practical interest for creation of effective light sources on the basis of current Si technology.ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π³Π°Π·ΠΎΡΠ°Π·Π½ΠΎΠ³ΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅Π²ΡΡ
ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ
p-ΡΠΈΠΏΠ° ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½Ρ Π΄Π²Π΅ ΡΡΠ΅Ρ
ΡΠ»ΠΎΠΉΠ½ΡΠ΅ ΡΡΡΡΠΊΡΡΡΡ SiO2 /SiNx /SiO2 Ρ Π½Π΅ΡΡΠ΅Ρ
ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ»Π΅Π½ΠΊΠ°ΠΌΠΈ Π½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ, ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½Π½ΡΠΌΠΈ ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅ΠΌ (x = 0,9) ΠΈΠ»ΠΈ Π°Π·ΠΎΡΠΎΠΌ (x = 1,4), Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΡΠ»ΠΎΠ΅Π². ΠΠΊΡΠΈΠ²Π½ΡΠ΅ ΡΠ»ΠΎΠΈ SiNx Π½Π΅ΡΡΠ΅Ρ
ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° (x = 0,9 ΠΈ x = 1,4) ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΌ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΡΠ΅Π°Π³ΠΈΡΡΡΡΠΈΡ
Π³Π°Π·ΠΎΠ² (SiH2 Cl2 /NH3 ) Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ (8/1 ΠΈ 1/8 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ). ΠΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ»Π»ΠΈΠΏΡΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΈ ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΠΏΡΠ΅Π»ΠΎΠΌΠ»Π΅Π½ΠΈΡ, ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΈ Π»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π·Π°Π²ΠΈΡΡΡ ΠΎΡ ΡΡΠ΅Ρ
ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° Π½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ. Π‘ΡΡΡΠΊΡΡΡΡ Ρ Π°ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ»ΠΎΡΠΌΠΈ Π½ΠΈΡΡΠΈΠ΄Π° Ρ ΠΈΠ·Π±ΡΡΠΊΠΎΠΌ ΠΊΡΠ΅ΠΌΠ½ΠΈΡ ΠΈ Π°Π·ΠΎΡΠ° ΠΈΠ·Π»ΡΡΠ°ΡΡ Π² ΠΊΡΠ°ΡΠ½ΠΎΠΉ (1,9 ΡΠ) ΠΈ ΡΠΈΠ½Π΅ΠΉ (2,6 ΡΠ) ΠΎΠ±Π»Π°ΡΡΡΡ
ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΠΏΡΠΈΡΠ΅ΠΌ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ²Π΅ΡΠ΅Π½ΠΈΡ ΡΡΠ°Π²Π½ΠΈΠΌΠ° Π΄Π»Ρ Π΄Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ². ΠΡΡΡΡΠ°Ρ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ° ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ ΡΡΠΆΠ΅Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ° Ρ Π°ΠΊΡΠΈΠ²Π½ΡΠΌ ΡΠ»ΠΎΠ΅ΠΌ SiN1,4 , ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π΄Π»Ρ ΠΎΠ±ΡΠ°Π·ΡΠ° Ρ Π°ΠΊΡΠΈΠ²Π½ΡΠΌ ΡΠ»ΠΎΠ΅ΠΌ SiN0,9 Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ Ρ ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΏΠ΅ΠΊΡΡΠ° Π² ΠΊΠΎΡΠΎΡΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΏΠΎΡΠ»Π΅ ΠΎΡΠΆΠΈΠ³Π°. ΠΡΠΈΡΠΎΠ΄Π° Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ ΡΠ²Π΅ΡΠ΅Π½ΠΈΡ ΠΈ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ΅ΡΠΌΠΎΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΎΠ±ΡΡΡΠ½ΡΡΡΡΡ c ΡΡΠ΅ΡΠΎΠΌ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΡΠΆΠ΅Π½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ Ρ
Π²ΠΎΡΡΠΎΠ²ΡΡ
ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ.Π‘ΡΡΡΠΊΡΡΡΡ Ρ ΡΠ΅ΡΠ΅Π΄ΡΡΡΠΈΠΌΠΈΡΡ ΡΠ»ΠΎΡΠΌΠΈ ΠΎΠΊΡΠΈΠ΄Π° ΠΈ Π½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² ΡΠ²Π΅ΡΠ° Π½Π° Π±Π°Π·Π΅ ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π»Π°Π·Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠΆΠΈΠ³Π° Π½Π° ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΡ CVD-ΠΏΠ»Π΅Π½ΠΎΠΊ Π½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ
The light-emitting properties of Si-rich silicon nitride films deposited on the Si (100) substrate by plasma-enhanced (PECVD) and low-pressure chemical vapor deposition (LPCVD) have been investigated. In spite of the similar stoichiometry (SiN1.1), nitride films fabricated by different techniques emit in different spectral ranges. Photoluminescence (PL) maxima lay in red (640 nm) and blue (470 nm) spectral range for the PECVD and LPCVD SiN1.1 films, respectively. It has been shown that equilibrium furnace annealing and laser annealing by ruby laser (694 nm, 70 ns) affect PL spectra of PECVD and LPCVD SiN1.1 in a different way. Furnace annealing at 600 Β°C results in a significant increase of the PL intensity of the PECVD film, while annealing of LPCVD films result only in PL quenching. It has been concluded that laser annealing is not appropriate for the PECVD film. The dominated red band in the PL spectrum of the PECVD film monotonically decreases with increasing an energy density of laser pulses from 0.45 to 1.4 J/cm2. Besides, the ablation of PECVD nitride films is observed after irradiation by laser pulses with an energy density of > 1 J/cm2. This effect is accompanied by an increase in blue emission attributed to the formation of a polysilicon layer under the nitride film. In contrast, the LPCVD film demonstrates the high stability to pulsed laser exposure. Besides, an increase in the PL intensity for LPCVD films is observed after irradiation by a double laser pulse (1.4 + 2 J/cm2) which has not been achieved by furnace annealing.ΠΠ·ΡΡΠ΅Π½Ρ ΡΠ²Π΅ΡΠΎΠΈΠ·Π»ΡΡΠ°ΡΡΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½Π½ΡΡ
ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅ΠΌ ΠΏΠ»Π΅Π½ΠΎΠΊ Π½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ, ΠΎΡΠ°ΠΆΠ΄Π΅Π½Π½ΡΡ
Π½Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅Π²ΡΠ΅ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ Si(100) ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΏΠ»Π°Π·ΠΌΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ (PECVD) ΠΈ Π³Π°Π·ΠΎΡΠ°Π·Π½ΠΎΠ³ΠΎ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΈ Π½ΠΈΠ·ΠΊΠΎΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ (LPCVD). ΠΠ΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΡ
ΠΎΠ΄Π½ΡΠΉ ΡΡΠ΅Ρ
ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΡΡΠ°Π² (ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Si/N), ΠΏΠ»Π΅Π½ΠΊΠΈ Π½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ SiN1,1, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ, ΠΈΠ·Π»ΡΡΠ°ΡΡ Π² ΡΠ°Π·Π½ΡΡ
ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΠΎΠ±Π»Π°ΡΡΡΡ
. ΠΠ°ΠΊΡΠΈΠΌΡΠΌΡ ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ (Π€Π) Π»Π΅ΠΆΠ°Ρ Π² ΠΊΡΠ°ΡΠ½ΠΎΠΉ (640 Π½ΠΌ) ΠΈ ΡΠΈΠ½Π΅ΠΉ (470 Π½ΠΌ) ΠΎΠ±Π»Π°ΡΡΡΡ
ΡΠΏΠ΅ΠΊΡΡΠ° Π΄Π»Ρ ΠΏΠ»Π΅Π½ΠΎΠΊ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ PECVD ΠΈ LPCVD ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΠ΅ΡΠ½ΠΎΠΉ ΠΈ Π»Π°Π·Π΅ΡΠ½ΡΠΉ ΠΎΡΠΆΠΈΠ³ ΡΡΠ±ΠΈΠ½ΠΎΠ²ΡΠΌ Π»Π°Π·Π΅ΡΠΎΠΌ (694 Π½ΠΌ, 70 Π½Ρ) ΠΏΠΎ-ΡΠ°Π·Π½ΠΎΠΌΡ Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΡΠ²Π΅ΡΠΎΠΈΠ·Π»ΡΡΠ°ΡΡΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° PECVD- ΠΈ LPCVD-ΠΏΠ»Π΅Π½ΠΎΠΊ Π½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ. Π’Π°ΠΊ, ΠΏΠ΅ΡΠ½ΠΎΠΉ ΠΎΡΠΆΠΈΠ³ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ 600 Β°C ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ΅Π·ΠΊΠΎΠΌΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ Π€Π Π΄Π»Ρ ΠΏΠ»Π΅Π½ΠΊΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ PECVD, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ½ΠΎΠΉ ΠΎΡΠΆΠΈΠ³ ΠΏΠ»Π΅Π½ΠΊΠΈ, ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ LPCVD, ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΊ ΡΡΡΠ΅Π½ΠΈΡ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° Π€Π. ΠΠ°ΠΏΡΠΎΡΠΈΠ², Π»Π°Π·Π΅ΡΠ½ΡΠΉ ΠΎΡΠΆΠΈΠ³ Π½Π΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΈΡ Π΄Π»Ρ ΠΏΠ»Π΅Π½ΠΊΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ. ΠΠ»Ρ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄ΠΎΠΌΠΈΠ½ΠΈΡΡΡΡΠ΅ΠΉ ΠΏΠΎΠ»ΠΎΡΡ Π² ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π² Π»Π°Π·Π΅ΡΠ½ΠΎΠΌ ΠΈΠΌΠΏΡΠ»ΡΡΠ΅ ΠΎΡ 0,45 Π΄ΠΎ 1,4 ΠΠΆ/ΡΠΌ2 . ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΏΠΎΡΠ»Π΅ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°ΠΌΠΈ Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ Π±ΠΎΠ»ΡΡΠ΅ 1 ΠΠΆ/ΡΠΌ2 Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π°Π±Π»ΡΡΠΈΡ Π½ΠΈΡΡΠΈΠ΄Π½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ²Π΅ΡΠ΅Π½ΠΈΡ Π² ΡΠΈΠ½Π΅ΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ, ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΡ ΡΠ²ΡΠ·ΡΠ²Π°Π΅ΠΌ Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ»ΠΈΠΊΡΠ΅ΠΌΠ½ΠΈΡ ΠΏΠΎΠ΄ Π½ΠΈΡΡΠΈΠ΄Π½ΡΠΌ ΡΠ»ΠΎΠ΅ΠΌ. Π‘ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΠ»Π΅Π½ΠΊΠ°, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ LPCVD, Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΠ΅Ρ Π²ΡΡΠΎΠΊΡΡ ΡΡΠΎΠΉΠΊΠΎΡΡΡ ΠΊ Π»Π°Π·Π΅ΡΠ½ΠΎΠΌΡ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΠ΅ LPCVD-ΠΏΠ»Π΅Π½ΠΊΠΈ Π΄Π²ΠΎΠΉΠ½ΡΠΌ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠΌ (1,4 + 2 ΠΠΆ/ΡΠΌ2) ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΡΠΈΠ³Π½Π°Π»Π° Π»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ, ΡΠ΅Π³ΠΎ Π½Π΅ ΡΠ΄Π°Π²Π°Π»ΠΎΡΡ Π΄ΠΎΡΡΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠΆΠΈΠ³Π°
Optical Properties and Upconversion Luminescence of BaTiO3 Xerogel Structures Doped with Erbium and Ytterbium
Erbium upconversion (UC) photoluminescence (PL) from sol-gel derived barium titanate (BaTiO3:Er) xerogel structures fabricated on silicon, glass or fused silica substrates has been studied. The fabricated structures under continuous-wave excitation at 980 nm and nanosecond laser excitation at 980 and 1540 nm demonstrate room temperature PL with the bands at 410, 523, 546, 658, 800 and 830 nm, which correspond to the 2H9/2 β 4I15/2, 2H11/2 β 4I15/2, 4S3/2 β 4I15/2, 4F9/2β 4I15/2 and 4I9/2β 4I15/2 transitions in Er3+ ions. The intensity of erbium UΠ‘ PL increases when an additional macroporous layer of strontium titanate is used beneath the BaTiO3 xerogel layer. It is enhanced for BaTiO3 xerogel films codoped with erbium and ytterbium (BaTiO3:Er,Yb). The redistribution of the intensity of the PL bands is observed for the latter and it depends on the excitation conditions. Finally, a Bragg reflector and a microcavity structure comprising of alternating (BaTiO3:Er,Yb) and SiO2 xerogel layers were fabricated with the cavity mode near the red PL band of Er3+ ions. Enhancement of UC PL from the microcavity was observed for the sample annealed from 450Β°C to 600Β°C. The fabricated cavity structures annealed at 450Β°C allow us to tune the cavity mode with 10 nm shift within the temperature range from +20Β°C to +130Β°C. Photonic application of BaTiO3 xerogel structures doped with lanthanides is discussed
Π€ΠΎΡΠΎ- ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΡ ΡΡΡΡΠΊΡΡΡ ΠΎΠΊΡΠΈΠ΄-Π½ΠΈΡΡΠΈΠ΄-ΠΎΠΊΡΠΈΠ΄-ΠΊΡΠ΅ΠΌΠ½ΠΈΠΉ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ ΠΎΠΏΡΠΎΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠ΅
Oxide-nitride-oxide-silicon (SiO2/SiN0.9/SiO2/Si) structures have been fabricated by chemical vapor deposition. The elemental composition and light emission properties of βSiO2/SiN0.9/SiO2/Siβ structures have been studied using Rutherford backscattering spectroscopy (RBS), photo- and electroluminescence (Pl, El). The RBS measurements has shown the presence of an intermediate silicon oxynitride layers at the SiO2βSiN0.9 interfaces.It has been shown that the photoluminescence of the SiO2/SiN0.9/SiO2/Si structure is due to the emission of a SiN0.9 layer, and the electroluminescence is attributed to the emission of silicon oxide and oxynitride layers. A broad intense band with a maximum at 1.9 eV dominates the Pl spectrum. This band attributed to the radiative recombination of excited carriers between the band tail states of the SiN0.9 layer. The origin of the less intense Pl band at 2.8 eV is associated with the presence Β of nitrogen defects in the silicon nitride.El was excited in the electrolyte-dielectric-semiconductor system. The electric field strength in the SiO2 layers reached 7β8 MV/cm and exceeded this parameter in nitride layer nearly four times. The electrons accelerating in electric field of 7β8 MV/cm could heat up to energies more than 5 eV. It is sufficient for the excitation of luminescence centres in the silicon oxide and oxynitride layers. The SiO2/SiN0.9/SiO2/Si composition El bands with quantum energies of 1.9 and 2.3 eV are related to the presence of silanol groups (SiβOH) and three-coordinated silicon atoms (β‘Siβ’) in the silicon oxide layers. The El band with an energy of 2.7 eV is attributed to the radiative relaxation of silylene (O2=Si:) centers in the silicon oxynitride regions. It is observed the least reduction of this band intensity under the influence of strong electric fields after a charge flow Β of 1β3 C/cm2.Π‘ΡΡΡΠΊΡΡΡΡ SiO2/SiN0,9/SiO2/Si Ρ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠΉ ΡΠΎΠ»ΡΠΈΠ½ΠΎΠΉ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»ΠΎΠ΅Π² 140 Π½ΠΌ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ ΠΈΠ· Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΡΠ°Π·Ρ. ΠΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΠΈ ΠΈΠ·Π»ΡΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΡΡΡΠΊΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠ΅Π·Π΅ΡΡΠΎΡΠ΄ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ (POP), ΡΠΎΡΠΎ- ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ (Π€Π, ΠΠ). ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ POP ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ ΠΎΠΊΡΠΈΠ½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ Π½Π° Π³ΡΠ°Π½ΠΈΡΠ°Ρ
Π½ΠΈΡΡΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΈ ΠΎΠΊΡΠΈΠ΄Π½ΡΡ
ΡΠ»ΠΎΠ΅Π².ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΡ ΠΎΠ±ΡΠ°Π·ΡΠ° ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΡΠ²Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅ΠΌ ΡΠ»ΠΎΡ SiN0,9, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΡ β ΡΠ²Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ»ΠΎΠ΅Π² ΠΎΠΊΡΠΈΠ΄Π° ΠΈ ΠΎΠΊΡΠΈΠ½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ. ΠΠΎΠ·Π±ΡΠΆΠ΄Π°Π΅ΠΌΠ°Ρ HeβCd Π»Π°Π·Π΅ΡΠΎΠΌ (EΠ²ΠΎΠ·Π± = 3,82 ΡΠ) ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΡ ΡΡΡΡΠΊΡΡΡΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΡΠΈΡΠΎΠΊΠΎΠΉ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΠΎΠΉ Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠΌ ΠΏΡΠΈ 1,9 ΡΠ, ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ Ρ ΠΈΠ·Π»ΡΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠ΅ΠΉ Π½ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ Π·Π°ΡΡΠ΄Π°, Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ
Π² Ρ
Π²ΠΎΡΡΠ°Ρ
ΡΠ°Π·ΡΠ΅ΡΠ΅Π½Π½ΡΡ
Π·ΠΎΠ½ Π½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ. ΠΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΌΠ΅Π½Π΅Π΅ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΡ ΠΏΡΠΈ 2,8 ΡΠ Π² ΡΠΏΠ΅ΠΊΡΡΠ΅ Π€Π ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ
Π΄Π΅ΡΠ΅ΠΊΡΠΎΠ² (N-ΡΠ΅Π½ΡΡΠΎΠ²) Π² ΡΠ»ΠΎΠ΅ SiN0,9.ΠΠ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π°Π»Π°ΡΡ Π² Π³Π°Π»ΡΠ²Π°Π½ΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΠΈΡβΠ΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΠΊβΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ (ΠΠΠ) ΠΏΡΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π² ΡΡΡΡΠΊΡΡΡΠ΅ 5β6 ΠΠ/ΡΠΌ. ΠΠ΅Π»ΠΈΡΠΈΠ½Π° Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π² ΡΠ»ΠΎΡΡ
ΠΎΠΊΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ»Π° 7β8 ΠΠ/ΡΠΌ ΠΈ ΠΏΡΠ΅Π²ΡΡΠ°Π»Π° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ° Π² ΡΠ»ΠΎΠ΅ SiN0,9 Π² ~4 ΡΠ°Π·Π°. ΠΠ»Π΅ΠΊΡΡΠΎΠ½Ρ, ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠ»ΡΡ
7β8 MB/ΡΠΌ, ΠΌΠΎΠ³ΡΡ ΡΠ°Π·ΠΎΠ³ΡΠ΅Π²Π°ΡΡΡΡ Π΄ΠΎ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π±ΠΎΠ»Π΅Π΅ 5 ΡΠ, Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠΉ Π΄Π»Ρ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ΅Π½ΡΡΠΎΠ² Π»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ Π² ΡΠ»ΠΎΡΡ
ΠΎΠΊΡΠΈΠ΄Π° ΠΈ ΠΎΠΊΡΠΈΠ½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ. ΠΠ»Ρ ΠΈΠ·ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ Sio2/SiN0,9/SiO2/Si ΠΏΠΎΠ»ΠΎΡΡ ΠΠ Ρ ΡΠ½Π΅ΡΠ³ΠΈΡΠΌΠΈ 1,9 ΠΈ 2,3 ΡΠ ΡΠ²ΡΠ·Π°Π½Ρ Ρ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ Π² ΡΠ»ΠΎΡΡ
ΠΎΠΊΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ ΡΠΈΠ»Π°Π½ΠΎΠ»ΡΠ½ΡΡ
Π³ΡΡΠΏΠΏ (SiβOH) ΠΈ ΡΡΠ΅Ρ
ΠΊΠΎΠΎΡΠ΄ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π°ΡΠΎΠΌΠΎΠ² ΠΊΡΠ΅ΠΌΠ½ΠΈΡ (Π3β‘Siβ’). ΠΠΎΠ»ΠΎΡΠ° Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ 2,7 ΡΠ ΠΏΡΠΈΠΏΠΈΡΠ°Π½Π° ΠΈΠ·Π»ΡΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π»Π°ΠΊΡΠ°ΡΠΈΠΈ Π΄Π²ΡΡ
ΠΊΠΎΠΎΡΠ΄ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π°ΡΠΎΠΌΠΎΠ² ΠΊΡΠ΅ΠΌΠ½ΠΈΡ (O2=Si:) Π² ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π½ΡΡ
ΠΎΠ±Π»Π°ΡΡΡΡ
ΠΎΠΊΡΠΈΠ½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ. ΠΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ²Π΅ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΡ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡΡ ΠΊ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠΈΠ»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠ»Π΅ΠΉ ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΎΡΠ΅ΠΊΠ°Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ±ΡΠ°Π·Π΅Ρ Π·Π°ΡΡΠ΄Π° 1β3 ΠΠ»/ΡΠΌ2
Π‘ΡΡΡΠΊΡΡΡΠ½ΡΠ΅ ΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΎΠΊΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ, ΠΈΠΌΠΏΠ»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠΎΠ½Π°ΠΌΠΈ ΡΠΈΠ½ΠΊΠ°: Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΏΠ΅ΡΠ΅ΡΡΡΠ΅Π½ΠΈΡ ΠΈ ΡΠ΅ΡΠΌΠΎΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ
The phase-structural composition of a silica film grown on Si substrate implanted with Zn ions at room temperature with different fluences has been studied using transmission electron microscopy and electron diffraction. The small clusters (1β2 nm) and the large clusters (5β7 nm) have been formed in as-implanted silica films with the Zn concentration of 6β7 at % and 16β18 at %, respectively. Furnace annealing at 750 Β°Π‘ for two hours results both in the formation of the orthorhombic Zn2SiO4 phase (space group R-3) in the case of low fluence (5 Β· 1016 cmβ2) and in the formation of the cubic ZnO phase (space group F-43m) in the case of high fluence (1 Β· 1017 cmβ2). It has been shown that impurity loss during implantation and subsequent annealing increase with fluence of implanted ions. The fraction of Zn atoms in clusters has been estimated to be 15 % and 18 % for fluences (5 Β· 1016 cmβ2) and (1 Β· 1017 cmβ2), respectively. It has been shown that residual Zn impurities dissolved in silica matrix noticeably suppress the light-emitting properties of silica with embedded Zn2SiO4 and ZnO nanocrystals.ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΎΡΠ²Π΅ΡΠΈΠ²Π°ΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ Π΄ΠΈΡΡΠ°ΠΊΡΠΈΠΈ ΠΈΠ·ΡΡΠ΅Π½ ΡΠ°Π·ΠΎΠ²ΠΎΡΡΡΡΠΊΡΡΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΡΠ»ΠΎΠ΅Π² Π°ΠΌΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΎΠΊΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ, ΠΈΠΌΠΏΠ»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠΎΠ½Π°ΠΌΠΈ ΡΠΈΠ½ΠΊΠ°, Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΏΠ΅ΡΠ΅ΡΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΠΌΠ΅ΡΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π½Π°Π½ΠΎΠΊΠ»Π°ΡΡΠ΅ΡΡ ΠΌΠ°Π»ΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ° (1β2 Π½ΠΌ) ΡΠΎΡΠΌΠΈΡΡΡΡΡΡ ΡΠΆΠ΅ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΏΡΠΈ ΠΊΠΎΠΌΠ½Π°ΡΠ½ΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΡΠΈΠ½ΠΊΠ° 6β7 Π°Ρ. %, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π΄Π»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π°Π½ΠΎΠΊΠ»Π°ΡΡΠ΅ΡΠΎΠ² ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ 5β7 Π½ΠΌ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠ° ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΡΠΈΠ½ΠΊΠ° 16β18 Π°Ρ. %. ΠΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠ½ΠΎΠΉ ΠΎΡΠΆΠΈΠ³ ΠΏΡΠΈ 750 Β°C Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 2 Ρ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°Π·Ρ ΡΠΎΠΌΠ±ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Zn2SiO4 (ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½Π°Ρ Π³ΡΡΠΏΠΏΠ° ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ R-3) Π² ΡΠ»ΡΡΠ°Π΅ ΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΡΠ»ΡΠ΅Π½ΡΠ° (5 Β· 1016 cΠΌβ2) ΠΈ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°Π·Ρ ZnO (ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½Π°Ρ Π³ΡΡΠΏΠΏΠ° ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ F-43m) Π² ΡΠ»ΡΡΠ°Π΅ Π±ΓΠ»ΡΡΠ΅Π³ΠΎ ΡΠ»ΡΠ΅Π½ΡΠ° (1 Β· 1017 cΠΌβ2). Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΠΎΡΠ΅ΡΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠΈ ΠΏΡΠΈ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ΅ΡΠΌΠΎΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡΡ Ρ ΡΠΎΡΡΠΎΠΌ ΡΠ»ΡΠ΅Π½ΡΠ° Π²Π½Π΅Π΄ΡΡΠ΅ΠΌΡΡ
ΠΈΠΎΠ½ΠΎΠ². ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π°ΡΠΎΠΌΠΎΠ² ΡΠΈΠ½ΠΊΠ°, Π½Π°Ρ
ΠΎΠ΄ΡΡΠΈΡ
ΡΡ Π² ΠΊΠ»Π°ΡΡΠ΅ΡΠ°Ρ
ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΡΠΆΠΈΠ³Π°: 15 ΠΈ 18 % Π΄Π»Ρ ΡΠ»ΡΠ΅Π½ΡΠΎΠ² 5 Β· 1016 ΠΈ 1 Β· 1017 cΠΌβ2 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΡΠΈΠΌΠ΅ΡΡ, ΠΎΡΡΠ°Π²ΡΠ°ΡΡΡ Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ Π² ΠΌΠ°ΡΡΠΈΡΠ΅ SiO2, Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎ Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΈΠ³Π½Π°Π»Π° Π»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ ΠΎΡ ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΎΠΊΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ Ρ Π½Π°Π½ΠΎΠΊΡΠΈΡΡΠ°Π»Π»Π°ΠΌΠΈ Zn2SiO4 ΠΈ ZnO
Effect of Nickel on Density and Surface Tension of Liquid Tin
Density and surface tension for Sn1-xNix(x = 0; 0,05; 0,1) have been measured by means of sessile dropmethod. Temperature dependences of these parameters as well as influence of Ni-atoms on density and surfacetension were analyzed. It is shown that chemical ordering is one of the most important factor, determining surfaceproperties and density
Structure and electric resistance of Sn-Cu(Ag) solders in the precrystallization temperature range
This work was partially supported by the State Foundation for Fundamental Research (Project No. F-28.3/024).We investigate the atomic structure of tin-based solders by X-ray diffraction methods and the reverse Monte Carlo method. Total and partial structural factors and pair correlation functions are calculated. It is shown that Sn0.987Cu0.013, Sn0.962Ag0.038, and Sn0.949Ag0.038Cu0.013 liquid alloys are characterized by a microinhomogeneous structure with Cu(Ag)-Sn clusters distributed in the tin-based matrix