27 research outputs found

    Optical properties of high quality Cu2ZnSnSe4 thin films

    Get PDF
    Cu2ZnSnSe4 thin films, fabricated on bare or molybdenum coated glass substrates by magnetron sputtering and selenisation, were studied by a range of techniques. Photoluminescence spectra reveal an excitonic peak and two phonon replicas of a donor-acceptor pair (DAP) recombination. Its acceptor and donor ionisation energies are 27 and 7 meV, respectively. This demonstrates that high-quality Cu2ZnSnSe4 thin films can be fabricated. An experimental value for the longitudinal optical phonon energy of 28 meV was estimated. The band gap energy of 1.01 eV at room temperature was determined using optical absorption spectr

    Optical characterizations of the GaAs quasi-delta-doped superlattices

    Get PDF

    Π‘Π²Π΅Ρ‚ΠΎΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠ΅ структуры Π½Π° основС нСстСхиомСтричСского Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° крСмния

    Get PDF
    The two triple-layered SiO2 /SiNx /SiO2Β  structures with Si-rich and N-rich silicon nitride active layer were fabricated on p-type Si-substrates by chemical vapour deposition. The SiNxΒ  layer of different composition (x = 0.9 and x = 1.4) was obtained by changing the ratio of the SiH2 Cl2 /NH3 flow rates during deposition of a silicon nitride active layer (8/1 and 1/8, respectively). The spectroscopic ellipsometry and photoluminescence (PL) measurements showed that the refractive index, the absorbance and luminescence properties depend on a chemical composition of silicon nitride layers. The structures with Si-rich and N-rich SiNxΒ  active layers emit in the red (1.9 eV) and blue (2.6 eV) spectral ranges, respectively. The PL intensities of different structures are comparable. The rapid thermal annealing results in the intensity decrease and in the PL spectra narrowing in the case of SiN1,4 active layer, whereas the increase in the emission intensity and the PL spectra broadening are observed in the case of the annealed sample with a SiN0,9 active layer. The PL origin and the effect of annealing treatment have been discussed, taking into account the band tail mechanism of radiative recombination. Multilayered (SiO2 /SiNx )n /Si structures are of practical interest for creation of effective light sources on the basis of current Si technology.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ химичСского Π³Π°Π·ΠΎΡ„Π°Π·Π½ΠΎΠ³ΠΎ осаТдСния Π½Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… p-Ρ‚ΠΈΠΏΠ° ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ‹ Π΄Π²Π΅ трСхслойныС структуры SiO2 /SiNx /SiO2 с нСстСхиомСтричСскими ΠΏΠ»Π΅Π½ΠΊΠ°ΠΌΠΈ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° крСмния, ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅ΠΌ (x = 0,9) ΠΈΠ»ΠΈ Π°Π·ΠΎΡ‚ΠΎΠΌ (x = 1,4), Π² качСствС Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… слоСв. АктивныС слои SiNx нСстСхиомСтричСского состава (x = 0,9 ΠΈ x = 1,4) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Ρ€Π΅Π°Π³ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π³Π°Π·ΠΎΠ² (SiH2 Cl2 /NH3 ) Π² процСссС осаТдСния (8/1 ΠΈ 1/8 соотвСтствСнно). ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ эллипсомСтрии ΠΈ Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ прСломлСния, ΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΠ΅ ΠΈ Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Π΅ свойства зависят ΠΎΡ‚ стСхиомСтричСского состава Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° крСмния. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρ‹ с Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ слоями Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° с ΠΈΠ·Π±Ρ‹Ρ‚ΠΊΠΎΠΌ крСмния ΠΈ Π°Π·ΠΎΡ‚Π° ΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‚ Π² красной (1,9 эВ) ΠΈ синСй (2,6 эВ) областях спСктра соотвСтствСнно, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ свСчСния сравнима для Π΄Π²ΡƒΡ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ². Быстрая тСрмичСская ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ интСнсивности ΠΈ ΡΡƒΠΆΠ΅Π½ΠΈΡŽ спСктра Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Π° с Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ слоСм SiN1,4 , Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ для ΠΎΠ±Ρ€Π°Π·Ρ†Π° с Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ слоСм SiN0,9 Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ возрастаниС интСнсивности Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ с ΡƒΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ спСктра Π² ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ послС ΠΎΡ‚ΠΆΠΈΠ³Π°. ΠŸΡ€ΠΈΡ€ΠΎΠ΄Π° Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ свСчСния ΠΈ влияниС Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΎΠ±ΡŠΡΡΠ½ΡΡŽΡ‚ΡΡ c ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ сущСствования протяТСнной Π·ΠΎΠ½Ρ‹ хвостовых состояний.Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρ‹ с Ρ‡Π΅Ρ€Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈΡΡ слоями оксида ΠΈ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° крСмния ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ практичСский интСрСс для создания эффСктивных источников свСта Π½Π° Π±Π°Π·Π΅ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ

    ВлияниС тСрмичСского ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ ΠΎΡ‚ΠΆΠΈΠ³Π° Π½Π° Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡŽ CVD-ΠΏΠ»Π΅Π½ΠΎΠΊ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° крСмния

    Get PDF
    The light-emitting properties of Si-rich silicon nitride films deposited on the Si (100) substrate by plasma-enhanced (PECVD) and low-pressure chemical vapor deposition (LPCVD) have been investigated. In spite of the similar stoichiometry (SiN1.1), nitride films fabricated by different techniques emit in different spectral ranges. Photoluminescence (PL) maxima lay in red (640 nm) and blue (470 nm) spectral range for the PECVD and LPCVD SiN1.1 films, respectively. It has been shown that equilibrium furnace annealing and laser annealing by ruby laser (694 nm, 70 ns) affect PL spectra of PECVD and LPCVD SiN1.1 in a different way. Furnace annealing at 600 Β°C results in a significant increase of the PL intensity of the PECVD film, while annealing of LPCVD films result only in PL quenching. It has been concluded that laser annealing is not appropriate for the PECVD film. The dominated red band in the PL spectrum of the PECVD film monotonically decreases with increasing an energy density of laser pulses from 0.45 to 1.4 J/cm2. Besides, the ablation of PECVD nitride films is observed after irradiation by laser pulses with an energy density of > 1 J/cm2. This effect is accompanied by an increase in blue emission attributed to the formation of a polysilicon layer under the nitride film. In contrast, the LPCVD film demonstrates the high stability to pulsed laser exposure. Besides, an increase in the PL intensity for LPCVD films is observed after irradiation by a double laser pulse (1.4 + 2 J/cm2) which has not been achieved by furnace annealing.Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ ΡΠ²Π΅Ρ‚ΠΎΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠ΅ свойства ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅ΠΌ ΠΏΠ»Π΅Π½ΠΎΠΊ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° крСмния, осаТдСнных Π½Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Π΅ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ Si(100) ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ плазмохимичСского осаТдСния (PECVD) ΠΈ Π³Π°Π·ΠΎΡ„Π°Π·Π½ΠΎΠ³ΠΎ химичСского осаТдСния ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΎΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ (LPCVD). НСсмотря Π½Π° сходный стСхиомСтричСский состав (ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Si/N), ΠΏΠ»Π΅Π½ΠΊΠΈ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° крСмния SiN1,1, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ способами, ΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‚ Π² Ρ€Π°Π·Π½Ρ‹Ρ… ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… областях. ΠœΠ°ΠΊΡΠΈΠΌΡƒΠΌΡ‹ Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ (Π€Π›) Π»Π΅ΠΆΠ°Ρ‚ Π² красной (640 Π½ΠΌ) ΠΈ синСй (470 Π½ΠΌ) областях спСктра для ΠΏΠ»Π΅Π½ΠΎΠΊ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ PECVD ΠΈ LPCVD соотвСтствСнно. ΠŸΠ΅Ρ‡Π½ΠΎΠΉ ΠΈ Π»Π°Π·Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚ΠΆΠΈΠ³ Ρ€ΡƒΠ±ΠΈΠ½ΠΎΠ²Ρ‹ΠΌ Π»Π°Π·Π΅Ρ€ΠΎΠΌ (694 Π½ΠΌ, 70 нс) ΠΏΠΎ-Ρ€Π°Π·Π½ΠΎΠΌΡƒ влияСт Π½Π° ΡΠ²Π΅Ρ‚ΠΎΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠ΅ свойства PECVD- ΠΈ LPCVD-ΠΏΠ»Π΅Π½ΠΎΠΊ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° крСмния. Π’Π°ΠΊ, ΠΏΠ΅Ρ‡Π½ΠΎΠΉ ΠΎΡ‚ΠΆΠΈΠ³ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 600 Β°C ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π΅Π·ΠΊΠΎΠΌΡƒ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°Π½ΠΈΡŽ интСнсивности Π€Π› для ΠΏΠ»Π΅Π½ΠΊΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ PECVD, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΠΏΠ΅Ρ‡Π½ΠΎΠΉ ΠΎΡ‚ΠΆΠΈΠ³ ΠΏΠ»Π΅Π½ΠΊΠΈ, сформированной ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ LPCVD, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊ Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡŽ исходного сигнала Π€Π›. Напротив, Π»Π°Π·Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚ΠΆΠΈΠ³ Π½Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ для ΠΏΠ»Π΅Π½ΠΊΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ плазмохимичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ. Для Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ интСнсивности Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ полосы Π² красной области с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ плотности энСргии Π² Π»Π°Π·Π΅Ρ€Π½ΠΎΠΌ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ΅ ΠΎΡ‚ 0,45 Π΄ΠΎ 1,4 Π”ΠΆ/см2 . ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, послС облучСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°ΠΌΠΈ с энСргиСй большС 1 Π”ΠΆ/см2 Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ абляция Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ. ΠŸΡ€ΠΈ этом увСличиваСтся ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ свСчСния Π² синСй области, ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΡ‹ связываСм с Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ поликрСмния ΠΏΠΎΠ΄ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π½Ρ‹ΠΌ слоСм. Π‘ Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, ΠΏΠ»Π΅Π½ΠΊΠ°, получСнная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ LPCVD, дСмонстрируСт Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΊ Π»Π°Π·Π΅Ρ€Π½ΠΎΠΌΡƒ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ. ΠŸΡ€ΠΈ этом ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ LPCVD-ΠΏΠ»Π΅Π½ΠΊΠΈ Π΄Π²ΠΎΠΉΠ½Ρ‹ΠΌ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠΌ (1,4 + 2 Π”ΠΆ/см2) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΡΠΈΠ»Π΅Π½ΠΈΡŽ сигнала Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ, Ρ‡Π΅Π³ΠΎ Π½Π΅ ΡƒΠ΄Π°Π²Π°Π»ΠΎΡΡŒ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΠ΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΎΡ‚ΠΆΠΈΠ³Π°

    Optical Properties and Upconversion Luminescence of BaTiO3 Xerogel Structures Doped with Erbium and Ytterbium

    Get PDF
    Erbium upconversion (UC) photoluminescence (PL) from sol-gel derived barium titanate (BaTiO3:Er) xerogel structures fabricated on silicon, glass or fused silica substrates has been studied. The fabricated structures under continuous-wave excitation at 980 nm and nanosecond laser excitation at 980 and 1540 nm demonstrate room temperature PL with the bands at 410, 523, 546, 658, 800 and 830 nm, which correspond to the 2H9/2 β†’ 4I15/2, 2H11/2 β†’ 4I15/2, 4S3/2 β†’ 4I15/2, 4F9/2β†’ 4I15/2 and 4I9/2β†’ 4I15/2 transitions in Er3+ ions. The intensity of erbium UΠ‘ PL increases when an additional macroporous layer of strontium titanate is used beneath the BaTiO3 xerogel layer. It is enhanced for BaTiO3 xerogel films codoped with erbium and ytterbium (BaTiO3:Er,Yb). The redistribution of the intensity of the PL bands is observed for the latter and it depends on the excitation conditions. Finally, a Bragg reflector and a microcavity structure comprising of alternating (BaTiO3:Er,Yb) and SiO2 xerogel layers were fabricated with the cavity mode near the red PL band of Er3+ ions. Enhancement of UC PL from the microcavity was observed for the sample annealed from 450Β°C to 600Β°C. The fabricated cavity structures annealed at 450Β°C allow us to tune the cavity mode with 10 nm shift within the temperature range from +20Β°C to +130Β°C. Photonic application of BaTiO3 xerogel structures doped with lanthanides is discussed

    Π€ΠΎΡ‚ΠΎ- ΠΈ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡ структур оксид-Π½ΠΈΡ‚Ρ€ΠΈΠ΄-оксид-ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ для примСнСния Π² ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ оптоэлСктроникС

    Get PDF
    Oxide-nitride-oxide-silicon (SiO2/SiN0.9/SiO2/Si) structures have been fabricated by chemical vapor deposition. The elemental composition and light emission properties of β€œSiO2/SiN0.9/SiO2/Si” structures have been studied using Rutherford backscattering spectroscopy (RBS), photo- and electroluminescence (Pl, El). The RBS measurements has shown the presence of an intermediate silicon oxynitride layers at the SiO2–SiN0.9 interfaces.It has been shown that the photoluminescence of the SiO2/SiN0.9/SiO2/Si structure is due to the emission of a SiN0.9 layer, and the electroluminescence is attributed to the emission of silicon oxide and oxynitride layers. A broad intense band with a maximum at 1.9 eV dominates the Pl spectrum. This band attributed to the radiative recombination of excited carriers between the band tail states of the SiN0.9 layer. The origin of the less intense Pl band at 2.8 eV is associated with the presence Β of nitrogen defects in the silicon nitride.El was excited in the electrolyte-dielectric-semiconductor system. The electric field strength in the SiO2 layers reached 7–8 MV/cm and exceeded this parameter in nitride layer nearly four times. The electrons accelerating in electric field of 7–8 MV/cm could heat up to energies more than 5 eV. It is sufficient for the excitation of luminescence centres in the silicon oxide and oxynitride layers. The SiO2/SiN0.9/SiO2/Si composition El bands with quantum energies of 1.9 and 2.3 eV are related to the presence of silanol groups (Si–OH) and three-coordinated silicon atoms (≑Siβ€’) in the silicon oxide layers. The El band with an energy of 2.7 eV is attributed to the radiative relaxation of silylene (O2=Si:) centers in the silicon oxynitride regions. It is observed the least reduction of this band intensity under the influence of strong electric fields after a charge flow Β of 1–3 C/cm2.Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρ‹ SiO2/SiN0,9/SiO2/Si с суммарной Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ диэлСктричСских слоСв 140 Π½ΠΌ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ химичСского осаТдСния ΠΈΠ· Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ„Π°Π·Ρ‹. Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΉ состав ΠΈ ΠΈΠ·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ свойства ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… структур исслСдовались ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ рСзСрфордовского ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ рассСяния (POP), Ρ„ΠΎΡ‚ΠΎ- ΠΈ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ (Π€Π›, Π­Π›). ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ POP установлСно Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ областСй оксинитрида крСмния Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π°Ρ… Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΈ оксидных слоСв.Показано, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡ ΠΎΠ±Ρ€Π°Π·Ρ†Π° обусловлСна свСчСниСм ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅ΠΌ слоя SiN0,9, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡ – свСчСниСм слоСв оксида ΠΈ оксинитрида крСмния. ВозбуТдаСмая He–Cd Π»Π°Π·Π΅Ρ€ΠΎΠΌ (EΠ²ΠΎΠ·Π± = 3,82 эВ) Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡ структуры характСризуСтся ΡˆΠΈΡ€ΠΎΠΊΠΎΠΉ интСнсивной полосой с максимумом ΠΏΡ€ΠΈ 1,9 эВ, связанной с ΠΈΠ·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠ΅ΠΉ носитСлСй заряда, Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π² хвостах Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… Π·ΠΎΠ½ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° крСмния. ΠŸΡ€ΠΎΠΈΡΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΌΠ΅Π½Π΅Π΅ интСнсивной полосы ΠΏΡ€ΠΈ 2,8 эВ Π² спСктрС Π€Π› обусловлСно Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ собствСнных Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² (N-Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ²) Π² слоС SiN0,9.Π­Π› Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π°Π»Π°ΡΡŒ Π² Π³Π°Π»ΡŒΠ²Π°Π½ΠΎΡΡ‚Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π² систСмС элСктролит–диэлСктрик–полупроводник (Π­Π”ΠŸ) ΠΏΡ€ΠΈ срСднСй Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ напряТСнности элСктричСского поля Π² структурС 5–6 ΠœΠ’/см. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° напряТСнности элСктричСского поля Π² слоях оксида крСмния составляла 7–8 ΠœΠ’/см ΠΈ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π»Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ этого ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π² слоС SiN0,9 Π² ~4 Ρ€Π°Π·Π°. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ‹, ускорСнныС Π² элСктричСских полях 7–8 MB/см, ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π°Π·ΠΎΠ³Ρ€Π΅Π²Π°Ρ‚ΡŒΡΡ Π΄ΠΎ энСргии Π±ΠΎΠ»Π΅Π΅ 5 эВ, достаточной для возбуТдСния Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ Π² слоях оксида ΠΈ оксинитрида крСмния. Для ΠΈΠ·ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Sio2/SiN0,9/SiO2/Si полосы Π­Π› с энСргиями 1,9 ΠΈ 2,3 эВ связаны с Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ Π² слоях оксида крСмния ΡΠΈΠ»Π°Π½ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ (Si–OH) ΠΈ Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π°Ρ‚ΠΎΠΌΠΎΠ² крСмния (О3≑Siβ€’). Полоса с энСргиСй 2,7 эВ приписана ΠΈΠ·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ рСлаксации Π΄Π²ΡƒΡ…ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π°Ρ‚ΠΎΠΌΠΎΠ² крСмния (O2=Si:) Π² ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… областях оксинитрида крСмния. Π˜Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ свСчСния этой полосы ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ наибольшСй ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒΡŽ ΠΊ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ ΡΠΈΠ»ΡŒΠ½Ρ‹Ρ… элСктричСских ΠΏΠΎΠ»Π΅ΠΉ послС протСкания Ρ‡Π΅Ρ€Π΅Π· ΠΎΠ±Ρ€Π°Π·Π΅Ρ† заряда 1–3 Кл/см2

    Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ‹Π΅ ΠΈ оптичСскиС свойства оксида крСмния, ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠΎΠ½Π°ΠΌΠΈ Ρ†ΠΈΠ½ΠΊΠ°: влияниС стСпСни пСрСсыщСния ΠΈ Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ

    Get PDF
    The phase-structural composition of a silica film grown on Si substrate implanted with Zn ions at room temperature with different fluences has been studied using transmission electron microscopy and electron diffraction. The small clusters (1–2 nm) and the large clusters (5–7 nm) have been formed in as-implanted silica films with the Zn concentration of 6–7 at % and 16–18 at %, respectively. Furnace annealing at 750 Β°Π‘ for two hours results both in the formation of the orthorhombic Zn2SiO4 phase (space group R-3) in the case of low fluence (5 Β· 1016 cm–2) and in the formation of the cubic ZnO phase (space group F-43m) in the case of high fluence (1 Β· 1017 cm–2). It has been shown that impurity loss during implantation and subsequent annealing increase with fluence of implanted ions. The fraction of Zn atoms in clusters has been estimated to be 15 % and 18 % for fluences (5 Β· 1016 cm–2) and (1 Β· 1017 cm–2), respectively. It has been shown that residual Zn impurities dissolved in silica matrix noticeably suppress the light-emitting properties of silica with embedded Zn2SiO4 and ZnO nanocrystals.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡΠ²Π΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ элСктронной микроскопии ΠΈ элСктронной Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ фазовоструктурный состав слоСв Π°ΠΌΠΎΡ€Ρ„Π½ΠΎΠ³ΠΎ оксида крСмния, ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠΎΠ½Π°ΠΌΠΈ Ρ†ΠΈΠ½ΠΊΠ°, Π² зависимости ΠΎΡ‚ стСпСни пСрСсыщСния ΠΏΡ€ΠΈΠΌΠ΅ΡΡŒΡŽ. Показано, Ρ‡Ρ‚ΠΎ нанокластСры ΠΌΠ°Π»ΠΎΠ³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° (1–2 Π½ΠΌ) Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΡƒΠΆΠ΅ Π² процСссС ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ†ΠΈΠ½ΠΊΠ° 6–7 Π°Ρ‚. %, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ для формирования нанокластСров Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ 5–7 Π½ΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠ° концСнтрация Ρ†ΠΈΠ½ΠΊΠ° 16–18 Π°Ρ‚. %. Π”Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ‡Π½ΠΎΠΉ ΠΎΡ‚ΠΆΠΈΠ³ ΠΏΡ€ΠΈ 750 Β°C Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 Ρ‡ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ кристалличСской Ρ„Π°Π·Ρ‹ ромбичСского Zn2SiO4 (пространствСнная Π³Ρ€ΡƒΠΏΠΏΠ° симмСтрии R-3) Π² случаС мСньшСго Ρ„Π»ΡŽΠ΅Π½ΡΠ° (5 Β· 1016 cм–2) ΠΈ кубичСской Ρ„Π°Π·Ρ‹ ZnO (пространствСнная Π³Ρ€ΡƒΠΏΠΏΠ° симмСтрии F-43m) Π² случаС Π±Γ“Π»ΡŒΡˆΠ΅Π³ΠΎ Ρ„Π»ΡŽΠ΅Π½ΡΠ° (1 Β· 1017 cм–2). УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ примСси ΠΏΡ€ΠΈ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² процСссС Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ с ростом Ρ„Π»ΡŽΠ΅Π½ΡΠ° внСдряСмых ΠΈΠΎΠ½ΠΎΠ². ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° количСства Π°Ρ‚ΠΎΠΌΠΎΠ² Ρ†ΠΈΠ½ΠΊΠ°, находящихся Π² кластСрах послС провСдСния ΠΎΡ‚ΠΆΠΈΠ³Π°: 15 ΠΈ 18 % для Ρ„Π»ΡŽΠ΅Π½ΡΠΎΠ² 5 Β· 1016 ΠΈ 1 Β· 1017 cм–2 соотвСтствСнно. ΠŸΡ€ΠΈΠΌΠ΅ΡΡŒ, ΠΎΡΡ‚Π°Π²ΡˆΠ°ΡΡΡ Π² растворСнном состоянии Π² ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ SiO2, Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ влияСт Π½Π° ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ сигнала Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ ΠΎΡ‚ ΠΏΠ»Π΅Π½ΠΊΠΈ оксида крСмния с нанокристаллами Zn2SiO4 ΠΈ ZnO

    Effect of Nickel on Density and Surface Tension of Liquid Tin

    Get PDF
    Density and surface tension for Sn1-xNix(x = 0; 0,05; 0,1) have been measured by means of sessile dropmethod. Temperature dependences of these parameters as well as influence of Ni-atoms on density and surfacetension were analyzed. It is shown that chemical ordering is one of the most important factor, determining surfaceproperties and density

    Structure and electric resistance of Sn-Cu(Ag) solders in the precrystallization temperature range

    No full text
    This work was partially supported by the State Foundation for Fundamental Research (Project No. F-28.3/024).We investigate the atomic structure of tin-based solders by X-ray diffraction methods and the reverse Monte Carlo method. Total and partial structural factors and pair correlation functions are calculated. It is shown that Sn0.987Cu0.013, Sn0.962Ag0.038, and Sn0.949Ag0.038Cu0.013 liquid alloys are characterized by a microinhomogeneous structure with Cu(Ag)-Sn clusters distributed in the tin-based matrix

    Temperature changes in the structure of Ga-In metallic melts

    No full text
    corecore