17 research outputs found

    Atypical, non-standard functions of the microtubule associated Tau protein.

    Get PDF
    Since the discovery of the microtubule-associated protein Tau (MAPT) over 40 years ago, most studies have focused on Tau's role in microtubule stability and regulation, as well as on the neuropathological consequences of Tau hyperphosphorylation and aggregation in Alzheimer's disease (AD) brains. In recent years, however, research efforts identified new interaction partners and different sub-cellular localizations for Tau suggesting additional roles beyond its standard function as microtubule regulating protein. Moreover, despite the increasing research focus on AD over the last decades, Tau was only recently considered as a promising therapeutic target for the treatment and prevention of AD as well as for neurological pathologies beyond AD e.g. epilepsy, excitotoxicity, and environmental stress. This review will focus on atypical, non-standard roles of Tau on neuronal function and dysfunction in AD and other neurological pathologies providing novel insights about neuroplastic and neuropathological implications of Tau in both the central and the peripheral nervous system

    CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice.

    Get PDF
    Neuroinflammation and microglial activation are significant processes in Alzheimer's disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer's disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer's disease and other tau-mediated neurodegenerative diseases.Funded by a grant from the Wellcome Trust (Grant number: 104025/Z/14/Z), and by the NIHR Oxford Health Biomedical Research Centre

    CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice

    Get PDF
    Neuroinflammation and microglial activation are significant processes in Alzheimer’s disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer’s disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer’s disease and other tau-mediated neurodegenerative diseases

    Are Tau Aggregates Toxic or Protective in Tauopathies?

    No full text
    Aggregation of highly-phosphorylated tau into aggregated forms such as filaments and neurofibrillary tangles is one of the defining pathological hallmarks of Alzheimer’s disease and other tauopathies. Hence therapeutic strategies have focused on inhibition of tau phosphorylation or disruption of aggregation. However, animal models imply that tau-mediated dysfunction and toxicity do not require aggregation but instead are caused by soluble hyper-phosphorylated tau. Over the years, our findings from a Drosophila model of tauopathy have reinforced this. We have shown that highly-phosphorylated wild-type human tau causes behavioural deficits resulting from synaptic dysfunction, axonal transport disruption and cytoskeletal destabilisation in vivo. These deficits are evident in the absence of neuronal death or filament/tangle formation. Unsurprisingly, both pharmacological and genetic inhibition of GSK-3β rescue these tau phenotypes. However, GSK-3β inhibition also unexpectedly increases tau protein levels, and produces insoluble granular tau oligomers. As well as underlining the growing consensus that tau toxicity is mediated by a highly-phosphorylated soluble tau species, our findings further show that not all insoluble tau aggregates are toxic. Some tau aggregates, in particular tau oligomers, are non-toxic, and may even be protective against tau toxicity in vivo. This has serious implications for emerging therapeutic strategies to dissolve tau aggregates, which might be ineffective or even counter-productive. In light of this, it is imperative to identify the key toxic tau species and to understand how it mediates dysfunction and degeneration so that the effective disease-modifying therapies can be developed

    An assessment of the translational relevance of Drosophila in drug discovery

    No full text
    Introduction: Drosophila melanogaster offers a powerful expedient and economical system with facile genetics. Because of the high sequence and functional conservation with human disease-associated genes, it has been cardinal in deciphering disease mechanisms at the genetic and molecular level. Drosophila are amenable to and respond well to pharmaceutical treatment which coupled to their genetic tractability has led to discovery, repositioning, and validation of a number of compounds. Areas covered: This review summarizes the generation of fly models of human diseases, their advantages and use in elucidation of human disease mechanisms. Representative studies provide examples of the utility of this system in modeling diseases and the discovery, repositioning and testing on pharmaceuticals to ameliorate them. Expert opinion: Drosophila offers a facile and economical whole animal system with many homologous organs to humans, high functional conservation and established methods of generating and validating human disease models. Nevertheless, it remains relatively underused as a drug discovery tool probably because its relevance to mammalian systems remains under question. However, recent exciting success stories using Drosophila disease models for drug screening, repositioning and validation strongly suggest that fly models should figure prominently in the drug discovery pipeline from bench to bedside.</p

    Raman spectroscopy: An emerging tool in neurodegenerative disease research and diagnosis

    No full text
    The pathogenesis underlining many neurodegenerative diseases remains incompletely understood. The lack of effective biomarkers and disease preventative medicine demands the development of new techniques to efficiently probe the mechanisms of disease and to detect early biomarkers predictive of disease onset. Raman spectroscopy is an established technique that allows the label-free fingerprinting and imaging of molecules based on their chemical constitution and structure. While analysis of isolated biological molecules has been widespread in the chemical community, applications of Raman spectroscopy to study clinically relevant biological species, disease pathogenesis, and diagnosis have been rapidly increasing since the past decade. The growing number of biomedical applications has shown the potential of Raman spectroscopy for detection of novel biomarkers that could enable the rapid and accurate screening of disease susceptibility and onset. Here we provide an overview of Raman spectroscopy and related techniques and their application to neurodegenerative diseases. We further discuss their potential utility in research, biomarker detection, and diagnosis. Challenges to routine use of Raman spectroscopy in the context of neuroscience research are also presented

    The use of human neurons for novel drug discovery in dementia research

    Get PDF
    Although many disease models exist for neurodegenerative disease, the translation of basic research findings to clinic is very limited. Studies using freshly resected human brain tissue, commonly discarded from neurosurgical procedures, should complement on-going work using stem cell-derived human neurons and glia thus increasing the likelihood of success in clinical trials. Areas covered: Herein, the authors discuss key issues in the lack of translation from basic research to clinic. They also review the evidence that human neurons, both freshly resected brain tissue and stem cell-derived neurons, such as induced pluripotent stem cells (iPSCs), can be used for analysis of physiological and molecular mechanisms in health and disease. Furthermore, the authors compare and contrast studies using live human brain tissue and studies using induced human stem cell-derived neuron models. Using an example from the area of neurodegeneration, the authors suggest that replicating elements of research findings from animals and stem cell models in resected human brain tissue would strengthen our understanding of disease mechanisms and the therapeutic strategies and aid translation. Expert opinion: The use of human brain tissue alongside iPSC-derived neural models can validate molecular mechanisms identified in rodent disease models and strengthen their relevance to humans. If drug target engagement and mechanism of cellular action can be validated in human brain tissue, this will increase the success rate in clinical research. The combined use of resected human brain tissue, alongside iPSC-derived neural models, could be considered a standard step in pre-clinical research and help to bridge the gap to clinical trials

    EuroTau: towing scientists to tau without tautology

    No full text
    SCOPUS: le.jinfo:eu-repo/semantics/publishe

    EuroTau: towing scientists to tau without tautology

    No full text
    descripción no proporcionada por scopu

    Low endogenous and chemical induced heat shock protein induction in a 0N3Rtau-expressing drosophila larval model of Alzheimer’s disease

    No full text
    Reduction of tau phosphorylation and aggregation by manipulation of heat shock protein (HSP) molecular chaperones has received much attention in attempts to further understand and treat tauopathies such as Alzheimer's disease. We examined whether endogenous HSPs are induced in Drosophila larvae expressing human tau (3R-tau) in motor neurons, and screened several chemical compounds that target the HSP system using medium-throughput behavioral analysis to assay their effects on tau-induced neuronal dysfunction in vivo. Tau-expressing larvae did not show a significant endogenous HSP induction response, whereas robust induction of hsp70 was detectable in a similar larval model of polyglutamine disease. Although pan-neuronal tau expression augmented the induction of hsp70 following heat shock, several candidate HSP inducing compounds induced hsp70 protein in mammalian cells in vitro but did not detectably induce hsp70 mRNA or protein in tau expressing larvae. The hsp90 inhibitors 17-AAG and radicicol nevertheless caused a dose-dependent reduction in total human tau levels in transgenic larvae without specifically altering tau hyperphosphorylated at S396/S404. These and several other HSP modulating compounds also failed to rescue the tau-induced larval locomotion deficit in this model. Tau pathology in tau-expressing larvae, therefore, induces weak de novo HSP expression relative to other neurodegenerative disease models, and unlike these disease models, pharmacological manipulation of the hsp90 pathway does not lead to further induction of the heat shock response. Forthcoming studies investigating the effects of HSP induction on tau-mediated dysfunction/toxicity in such models will require more robust, non-pharmacological (perhaps genetic) means of manipulating the hsp90 pathway
    corecore