65 research outputs found

    Reduction of Energy Consumption of Brackish Water Reverse Osmosis Desalination System Via Model Based Optimisation

    Get PDF
    Reverse Osmosis (RO) process is being engaged to yield fresh water from brackish water sources. However, the RO process is characterized by its high specific energy consumption (SEC) owing to high-pressure pumps. The current study focuses on reducing the SEC of the brackish water RO desalination plant using model-based optimization practice. The inlet conditions of RO process such as the feed pressure, flow rate (individual membrane module and total plant) and temperature, have a substantial influence on the performance indicators namely, water productivity, product concentration and SEC. Therefore, the optimisation of this study has been directed to determine optimal inlet conditions within feasible limits to minimise SEC. Arab Potash Company (APC) brackish water RO desalination plant has been considered as the case study. The optimal inlet conditions have resulted in a significant energy saving of 27.97% depending on the set of decision variables being considered at a fixed brackish water feed concentration

    The effect of adding natural materials waste on the mechanical properties and water absorption of epoxy composite using grey relations analysis

    Get PDF
    Recently, there has been a tendency for scientific studies to deal with natural materials as fillers and reinforcement for polymer composites, which are used in many different applications due to their environmentally friendly properties when compared to synthetic materials. The current study aims to preserve the environment by dealing with natural materials and their influence on the mechanical properties and water absorption property of the polymer composites. In this study, epoxy composites were produced from local natural sourced non-hazardous raw natural materials using grey relational analysis (GRG). The materials used for fabrication include micro-filler of pollen palm 50 μm, seashell 75 μm and epoxy resin. Nine different composites were prepared using pollen palm and seashell as reinforcement material by varying the wt % of the micro-filler. Rule of the mixture was used for formulation and wt % of (0.5, 1 and 1.5) % reinforcement and 99.5, 99 and 98.5 % epoxy (binder) were used for composites. Grey relational analysis was conducted in order to scale the multi-response performance to a single response. The results indicate that optimum performance can be achieved with the addition of 1.5 wt % micro-filler of seashell, which achieved the first rank, while the second rank achieved by 0.5 wt % micro-filler of palm pollen and seashell when compared to other composites. The addition of micro-fillers has improved greatly the mechanical properties of epoxy composites. The loading of micro-fillers has influenced the water absorption property of composites based epoxy in ascending orde

    Scope and limitations of modelling, simulation, and optimisation of a spiral wound reverse osmosis process-basedwater desalination

    Get PDF
    YesThe reverse osmosis (RO) process is one of the best desalination methods, using membranes to reject several impurities from seawater and brackish water. To systematically perceive the transport phenomena of solvent and solutes via the membrane texture, several mathematical models have been developed. To date, a large number of simulation and optimisation studies have been achieved to gauge the influence of control variables on the performance indexes, to adjust the key variables at optimum values, and to realise the optimum production indexes. This paper delivers an intensive review of the successful models of theROprocess and both simulation and optimisation studies carried out on the basis of the models developed. In general, this paper investigates the scope and limitations of the RO process, as well as proving the maturity of the associated perspective methodologies

    Residual Stresses Characterisation of Hard Ceramic Coating (SiC-5wt%Al2O3) Using X-Ray Diffraction Technique

    Get PDF
    The aim of this study is to measure residual stresses, specifically in wear protection coating, using the sin2ψ based on the X-ray diffraction technique. The combination of silicon carbide substrate and aluminium oxide (SiC-5wt.% Al2O3) is used as the wear protection coating, and AlNi alloy represents the bond coat, which is formed by the flame spraying method on the mild steel substrate. This in turn has enabled to reduce the thermal expansion constant between the substrate and composite ceramic layer. The diffraction angle, 2θ, is measured experimentally, and the lattice spacing is calculated using Bragg's Law using the measured diffraction angle and the known X-ray wavelength. Interestingly, stress calculations for the samples demonstrate a linear relationship of a slop proportionate to stress same as to homogenous isotropic samples in a bi-axial stress. Thus, the relationship between dspacing and sin2ψ is demonstrated as a straight line with a slope proportional to stress. However, the oscillatory trend showed the existence of in-homogeneous stress distribution. To resolve this challenge, X-ray elastic parameters are deployed instead of Poisson ratio (ν) and Young's modulus (E) values. The value of the residual stresses for these coatings calculated is compressive residual stresses of (-594.029 MPa)

    Numerical Simulation of a Partly Filled Rectangular Tank with Fuel Oil

    Get PDF
    Sloshing refers to a certain kind of fluid movement that changes as it progresses. It possesses properties that are both nonlinear and exceedingly unpredictable, and these properties affect the tank wall. This effect may lead to structural wear, which in turn can cause the tank to fail. Benzene and gasoil liquids are used to test the effect of sloshing liquid and accompanying pressure on the wall tank caused by the baffles in partially full fluid tanks. To attain this, modeling of the interaction between fluid and structure is justified using the finite element analysis while the ANSYS Fluent is used to do the simulation. Specifically, the analysis enables us to anticipate the pressure that is being exerted on the shield, the influence of sloshing on the grounding point forces, and the size of the sloshing waves. The pressure distribution over time indicates a reduction of pressure on the tank wall as a result of utilising a vertical baffle if compared to the case of a tank wall without a baffle. The usage of vertical shields allows for around 20% of the greatest contact energy to be deflected, which is attributed to the potential of generating turbulence and vortices by the baffle

    Recent Advances on The Applications of Phase Change Materials in Cold Thermal Energy Storage:A Critical Review

    Get PDF
    Cold thermal energy storage (CTES) based on phase change materials (PCMs) has shown great promise in numerous energy-related applications. Due to its high energy storage density, CTES is able to balance the existing energy supply and demand imbalance. Given the rapidly growing demand for cold energy, the storage of hot and cold energy is emerging as a particularly attractive option. The main purpose of this study is to provide a comprehensive overview of the current research progress on the utilisation of PCMs in CTES. The greatest difficulties associated with using PCMs for CTES are also examined in this overview. In this regard, a critical evaluation of experimental and numerical studies of the heat transfer properties of various fundamental fluids using PCMs is conducted. Specifically, several aspects that affect the thermal conductivity of PCMs are investigated. These factors include nanoparticle-rich PCM, a form of encapsulated PCM, solids volume percentage, and particle size. Discussions focus on observations and conclusions are drawn from conducted studies on PCMs used in CTES. Based on the findings of this study, a set of plausible recommendations are made for future research initiatives.</p

    Evaluation of solar energy powered seawater desalination pro-cesses: A review

    Get PDF
    YesSolar energy, amongst all renewable energies, has attracted inexhaustible attention all over the world as a supplier of sustainable energy. The energy requirement of major seawater desalination processes such as multistage flash (MSF), multi-effect distillation (MED) and reverse osmosis (RO) are fulfilled by burning fossil fuels, which impact the environment significantly due to the emission of greenhouse gases. The integration of solar energy systems into seawater desalination processes is an attractive and alternative solution to fossil fuels. This study aims to (i) assess the progress of solar energy systems including concentrated solar power (CSP) and photovoltaic (PV) to power both thermal and membrane seawater desalination processes including MSF, MED, and RO and (ii) evaluate the economic considerations and associated challenges with recommendations for further improvements. Thus, several studies on a different combination of seawater desalination processes of solar energy systems are reviewed and analysed concerning specific energy consumption and freshwater production cost. It is observed that although solar energy systems have the potential of reducing carbon footprint significantly, the cost of water production still favours the use of fossil fuels. Further research and development on solar energy systems are required to make their use in desalination economically viable. Alternatively, the carbon tax on the use of fossil fuels may persuade desalination industries to adopt renewable energy such as solar

    Evaluation of phenol removal via a spiral wound reverse osmosis process with different feed concentrations: simulation study

    Full text link
    Abstract Reverse osmosis (RO) process is progressively engaged in various industrial applications as a promising separation process in favour of classical methods. In this study, an earlier one-dimensional distributed model of RO process, developed by the author, is used to simulate the transport phenomena of phenol removal. The proposed model represented the process parameters as a function of longitudinal variation along the x-coordinate of feed side. The transport parameters of the membrane are optimised by the gEST parameter estimation tool of gPROMS. The model is verified against phenol removal experimental data for a pilot-scale spiral wound RO (SWRO) treatment system. The model has been used to explore the effects of key operating parameters on the phenol removal for five feed concentration cases.</jats:p
    corecore