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Abstract 

Reverse Osmosis (RO) process can be considered as one of the intensively used pioneering 

equipment for reusing wastewater of several applications. The recent study presented the 

development of an accurate model for predicting the dimethylphenol removal from wastewater 

via RO process. The Response Surface Methodology (RSM) was applied to carry out this 

challenge based on actual experimental data collected from the literature. The independent 

variables considered are the inlet pressure (5.83 to 13.58) atm, inlet temperature (29.5 to 32) oC, 

inlet feed flow rate (2.166 to 2.583)×10-4 m3/s, and inlet concentration (0.854 to 8.049)×10-3 

kmol/m3 and the dimethylphenol removal is considered as the response variable. The analysis of 

variance showed that the inlet temperature and feed flow rate have a negative influence on 

dimethylphenol removal from wastewater while the inlet pressure and concentration show a 

positive influence. In this regard, F-value of 240.38 indicates a considerable contribution of the 

predicted variables of pressure and concentration against the process dimethylphenol rejection. 

Also, the predicted R2 value of 0.9772 shows the high accuracy of the model. An overall 

assessment of simulating the performance of RO process against the operating parameters has 

been systematically demonstrated using the proposed RSM model.  
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1. Introduction  

Water pollution is a crucial issue of health due to its link to a variety of diseases with hazardous 

environmental consequences. The corresponding emerging pollutants and toxic contaminants in 

water are of a great concern due to its carcinogenic impact. The rapid growth of population 

besides the uncontrolled expansion of industries, and agricultural and domestic activities are the 

main factors for water pollution.1 Therefore, the elimination of these pollutants from wastewater 

is of a high priority today. In this regard, intensive endeavors from research institutions were 

made to encounter the water pollution by innovating feasible and efficient technologies.2,3 

Nowadays, a clear global increase of highly toxic and carcinogenic compounds in wastewater is 

being noticed. Modern industrial applications associated with different types of technologies are 

disposing vast amounts of wastewater with a variety of chemicals, fats, alcohols, and acids into 

the environment. Undoubtedly, the main concern of wastewater is the wide range of complex 

harmful chemicals and highly toxic pollutants that have been restricted by several environmental 

agencies.4 Therefore, it is recommended to employ a proper technology that would reduce not 

only the water deficiencies but also the energy consumption leading to reduced impact on 

climate change. Having said this, the reuse of wastewater would reduce the reliance on potable 

water. However, this needs a comprehensive development of efficient, affordable, and low-cost 

treatment methods compared to the prevailing technologies. However, the reuse of wastewater 

may be forbidden as a result to the presence of complex compounds such as phenolic 

compounds. Note, 0.05 ppm has been assigned as the constraint of dimethylphenol in water 
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bodies based on the Agency of Toxic Substances and Disease Registry (ATSDR).5 Therefore, a 

variety of wastewater treatment approaches were consequently industrialised to reduce the highly 

toxic phenolic compounds such as adsorption, oxidation and membrane technology. Adsorption 

technology has been used to treat water with a wide range of emerging pollutants. Amongst other 

treatment technologiess, adsorption characterises as an easy and inexpensive operation with the 

use of wide range of adsorbents capturing various kinds of contaminants.6,7 Furthermore, the RO 

process has outweighed other membrane technologies due to its successfulness of removing a 

wide range of micropollutants including phenolic compounds.8,9,10  

In recent years, a number of model based research has been noted in the area of wastewater 

treatment.11 Accurate process models consisting of several partial (or ordinary) differential and 

algebraic and non-linear equations can describe the interaction of various design and operating 

conditions and process performance indicators. Therefore, the effect of the process input 

parameters on the process responses and the optimum performance can be conducted via 

simulation and optimisation studies, respectively, using detailed model-based techniques. 

However, the associated modelling of wastewater treatment using RO process has a considerable 

complexity of nonlinear behavior with many degrees of freedom.  

On the other hand, Srinivasan et al.12,13,14 and Sundaramoorthy et al.15 investigated the 

performance of RO process for the wastewater treatment containing phenolic compounds 

experimentally accompanied by simple models to predict the rejection of phenolic compounds 

from synthesised wastewater. However, these simple models were not accurate enough. It is 

important to know that the trustworthiness of any model in calculating the system performance 

principally depends on an accurate evaluation of model parameters using parameter estimation 

and experimental data. Specifically, solvent, and solute membrane transport parameters and feed 
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channel friction parameter were estimated graphically using linear fit that resulted in inaccurate 

predictions. To address these inaccuracies, Al-Obaidi and Mujtaba16 and Al-Obaidi et al.17 

developed more rigorous models. However, the open literature confirms the scarcity of a very 

accurate model with uncertainty in their parameters that can efficiently estimate the 

dimethylphenol removal from wastewater using RO process. In addition, computational time can 

be another factor for not using high infidelity models for optimisation and control purposes. 

Therefore, models based on advanced multivariate statistical approaches such as Response 

Surface Methodology (RSM) and Artificial Neural Network (ANN) technique for complex 

processes can provide alternative to rigorous first principle based models with high computation 

time.18,19,20,21 Note, ANN has been extensively and successfully used as a prediction, 

classification, optimisation, and control methodology for a wide range of processes.22,23,24 For 

instance, Khayet et al.25 employed ANN and RSM to create models for simulation and 

optimisation of spiral wound RO seawater desalination process. In this respect, the feed 

concentration of sodium chloride, operating temperature, feed flow rate and pressure were 

considered as the input variables. However, the sodium chloride rejection and permeate flux 

were considered as the output variables. This assist to configure ANN and RSM models based on 

the obtainable experimental data. The adequacy of RSM model was very good to estimate the 

RO performance over the whole range of sodium chloride in the feed solution. Recently, 

Abdulrahman et al.11 used ANN combined with Genetic Algorithm to create a new model to 

predict the chlorophenol removal from wastewater based on experimental data obtained from an 

individual membrane of RO process. However, a thorough study exploring the feasibility of 

RSM based mathematical model to precisely predict the rejection of phenolic compounds from 

wastewater via the RO process has not yet been established and hence demonstrates the novelty 
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of this work.  The RSM model developed and validated in this work is then used to predict the 

performance of the RO process for removing dimethylphenol from wastewater under a wide 

range of operating and design conditions, which also reflects the novelty of this study. 

Experimental data from the open literature is used to validate the RSM model before using the 

model for further simulation. 

 

2. Description of RO system and experimental data 

Srinivasan and his co-authors carried out explicit experimental works to remove several 

pollutants of phenolic compounds family from wastewater via a simple design of RO process. In 

this regard, Srinivasan et al.14 used a pilot-scale of an individual spiral wound module of RO 

process to abate the existence of dimethylphenol from wastewater. Figure 1 shows a schematic 

diagram of the treatment process. The membrane used was Ion Exchange, India Ltd., TFC 

Polyamide of 7.845 m². The data sets included the flow rate, pressure, temperature, concentration 

as the operating parameters and dimethylphenol rejection as the response. A wide range of these 

parameters was used to explore the influence of these parameters on the process rejection (see 

Table 1).  

The feed solution splits into two main streams of low (permeate) and high (retentate) 

concentrations, after being processed in the membrane module and collected in two separate 

stainless tanks with a manual valve at the retentate stream to adjust the feed velocity inside the 

module via controlling the operating pressure. Therefore, two flow meters were instilled in the 

permeate and retentate streams to measure the flow rate. Moreover, another specific valve was 

set to control the high-pressure pump as can be seen in Figure 1. Furthermore, the operating 

pressure and retentate pressure were measured using Bourdon pressure gauges that fixed in the 
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inlet and outlet streams. Feed, permeate, and retentate dimethylphenol concentrations were 

analysed using A HPLC (Perkin Elmer, USA make) unit fitted with a UV detector and C-18 

column. 

 

 

 

Figure 1. Schematic diagram of individual RO system (Adapted from Srinivasan et al.14) 
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Table 1. Experimental results of dimethylphenol removal from wastewater (Adapted from Srinivasan et al.14) 

Pb 

(atm) 

Tb 
(oC) 

Cbx103 

(kmol/m3) 

Fb 

(m3/s) 

Rej 

(-) 

Pb 

(atm) 

Tb 
(oC) 

Cbx103 

(kmol/m3) 

Fb 

(m3/s) 

Rej  

(-) 

5.83 32.5 0.819 0.0002166 0.902 7.77 31 2.455 0.000233 0.928 

7.77 32.5 0.819 0.0002166 0.915 9.71 31 2.455 0.000233 0.944 

9.71 32.5 0.819 0.0002166 0.927 11.64 31 2.455 0.000233 0.950 

11.64 32.5 0.819 0.0002166 0.936 13.58 31 2.455 0.000233 0.956 

13.58 32.5 0.819 0.0002166 0.942 5.83 30 4.092 0.000233 0.936 

5.83 31 1.637 0.0002166 0.919 7.77 30 4.092 0.000233 0.943 

7.77 31 1.637 0.0002166 0.934 9.71 30 4.092 0.000233 0.951 

9.71 31 1.637 0.0002166 0.943 11.64 30 4.092 0.000233 0.957 

11.64 31 1.637 0.0002166 0.949 13.58 30 4.092 0.000233 0.964 

13.58 31 1.637 0.0002166 0.953 7.77 31.5 6.548 0.000233 0.953 

5.83 31 2.455 0.0002166 0.908 9.71 31.5 6.548 0.000233 0.962 

7.77 31 2.455 0.0002166 0.926 11.64 31.5 6.548 0.000233 0.969 

9.71 31 2.455 0.0002166 0.943 13.58 31.5 6.548 0.000233 0.973 

11.64 31 2.455 0.0002166 0.949 5.83 32.5 0.819 0.0002583 0.907 

13.58 31 2.455 0.0002166 0.952 7.77 32.5 0.819 0.0002583 0.92 

5.83 30 4.092 0.0002166 0.935 9.71 32.5 0.819 0.0002583 0.941 

7.77 30 4.092 0.0002166 0.94 11.64 32.5 0.819 0.0002583 0.950 

9.71 30 4.092 0.0002166 0.949 13.58 32.5 0.819 0.0002583 0.959 

11.64 30 4.092 0.0002166 0.955 5.83 31 1.637 0.0002583 0.921 

13.58 30 4.092 0.0002166 0.963 7.77 31 1.637 0.0002583 0.937 

7.77 31.5 6.548 0.0002166 0.952 9.71 31 1.637 0.0002583 0.943 

9.71 31.5 6.548 0.0002166 0.962 11.64 31 1.637 0.0002583 0.948 

11.64 31.5 6.548 0.0002166 0.97 13.58 31 1.637 0.0002583 0.951 

13.58 31.5 6.548 0.0002166 0.973 5.83 31 2.455 0.0002583 0.917 

5.83 32.5 0.819 0.000233 0.903 7.77 31 2.455 0.0002583 0.931 

7.77 32.5 0.819 0.000233 0.915 9.71 31 2.455 0.0002583 0.944 

9.71 32.5 0.819 0.000233 0.93 11.64 31 2.455 0.0002583 0.953 

11.64 32.5 0.819 0.000233 0.935 13.58 31 2.455 0.0002583 0.958 

13.58 32.5 0.819 0.000233 0.948 9.71 29 4.092 0.0002583 0.953 

5.83 31 1.637 0.000233 0.919 11.64 29 4.092 0.0002583 0.958 

7.77 31 1.637 0.000233 0.935 13.58 29 4.092 0.0002583 0.965 

9.71 31 1.637 0.000233 0.943 5.83 31.5 6.548 0.0002583 0.946 

11.64 31 1.637 0.000233 0.949 7.77 31.5 6.548 0.0002583 0.954 

13.58 31 1.637 0.000233 0.953 9.71 31.5 6.548 0.0002583 0.963 

5.83 31 2.455 0.000233 0.917 11.64 31.5 6.548 0.0002583 0.969 
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3. Response Surface Methodology  

The RSM is characterised by coding each variable to be optimised at three specific levels of -1, 

0, and +1.  In this regard, the prediction of individual Y variables has been based on a quadratic 

polynomial regression model. The model projected for each response variable is 

xxxx jiijiiiii
Y  +++= 

2

0                                                                           (1) 


0 , i , ii , and  ij  are constant, linear, square, and interaction regression coefficient terms, 

respectively. Also, xi and xj are independent variables. 

The multiple regression analysis and analysis of variance (ANOVA) were carried out using the 

Minitab software version 14 (Minitab Inc., USA).26 The accuracy of fit of the proposed model 

was appraised by the R2 (coefficient of determination) and its statistical significance, which was 

tested by the F-test.
 
A three-factor D-optimal design (statistical analysis method in ANOVA) 

was engaged to study the response of the dimethylphenol removal from wastewater via RO 

process. 
 

 

4. Results and response surface analysis 

The perception of any industrial process performance is quite important to comprehensively 

predict the associated response indicators in case of any expected change of operating conditions. 

Therefore, the process modelling including the RO process plays an important role as a superior 

tool to inclusively forecasting the process behavior within the constraints’ limits of inlet 

parameters. In this regard, several methodologies of process modelling can be used to attain this 

aim including RSM and ANN. In this study, response surface methodology based on 

experimental data is applied to understand the relationship between four predictor variables 

named: the inlet pressure, temperature, concentration and flow rate and their effect on 
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dimethylphenol removal from wastewater via RO process. It is important to mention that the 

pollutant removal from wastewater is highly recommended to guarantee disposing of wastewater 

with regulated limits. Therefore, this study was concerned with dimethylphenol removal from 

wastewater with the aim of developing an accurate model for RO process. In this regards, 

quadratic regression with a second order and interaction terms is used to describe the analysis of 

variance. However, F-ratio at a probability (P) of 0.01 is used to judge the significance of the 

model terms. More importantly, the model appropriateness is measured using model analysis, 

lack of fit test, coefficient of determination (R2), predicted error sum of squares (PRESS), and 

coefficient of variation (C.V). According to the quadratic regression Eq. 1, the regression 

equation of dimethylphenol removal as a function of the four input predictor variables can be 

described as  

Rej = 0.95 + 0.015 Pb – 9.374×10-3 Tb + 0.012 Cb – 7.122 ×10-5 Fb – 4.592×10-3 (Pb)
2 –

4.524×10-3 (Tb)
2 + 5.643×10-3 (Cb)

2+2.720 ×10-3 Pb Tb  – 4.166 ×10-3 Pb  Cb +1.997 ×10-3 Pb Fb 

+ 2.275 ×10-3 Tb  Fb 

It is observed that inlet temperature and volume flow rate have a negative influence while inlet 

pressure and concentration have a positive influence on the dimethylphenol removal. However, 

the negative impact of temperature is worse than the influence of feed flow rate. This is 

specifically opposite for both feed pressure and concentration which showed a higher positive 

contribution of feed pressure compared to lower contribution of concentration.   

The regression coefficients of the proposed model and their significant on the response are 

summarised in Table 2. Specifically, the presented rejection model includes linear, quadratic, and 

interacted parameters. Generally, the P-value (less than 0.01) signifies that the obtained model is 

considered high-significant and fits well with experimental results. However, the P-value (less 
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than 0.05) signifies the model is significant compared to P-value of less than 0.1 of not 

notability. Moreover, the probability of the model is less than 0.01, which shows that the model 

is high-significant in its part linear model. In other words, this is a desirable action as it specifies 

that the individual terms in the model have a significant influence on the process response. In 

this case, Pb, Tb, and Cb are significant model terms. The main effect of linear order of the inlet 

pressure Pb and the inlet concentration Cb are the most significant factors with first class of 

notability (*) associated with dimethylphenol removal more than the inlet temperature Tb with 

second class of notability (**). In this regard, the effect of the feed flow rate has less significance 

with third class of notability (***). On the other hand, the inlet pressure has significance in the 

quadratic part of the model with first class of notability (*) compared to temperature, 

concentration, and feed flow rate of third class of notability and not notability, respectively. In 

interaction part model, the combination of the effect of inlet pressure and inlet concentration has 

more significant with first class of notability (*). However, the combination of inlet temperature 

and concentration has no effect.  

The F-value represents the effect of predictor parameters variation on the response. Table 2 

depicts higher values of F for inlet pressure and concentration which means that the variation of 

these parameters makes a considerable change on the dimethylphenol removal from wastewater. 

However, the low values of F for the inlet temperature and flow rate indicate that the variation of 

these parameters are less significant on the dimethylphenol removal from wastewater. 
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Table 2. Regression coefficients of the predicted quadratic polynomial model for response variables 

Predictors Coefficient (β) F-value Probability Notability 

Intercept +0.95 --- 0.0001 * 

 Linear 

Pb +0.015 388.39 0.0001 * 

Tb - 9.374×10-3 7.23 0.0150 ** 

Cb + 0.012 28.27 0.0001 * 

Fb - 7.122 ×10-5 0.00175 0.9670 *** 

 Quadratic 

Pb Pb - 4.592×10-3 32.23 0.0001 < 0.000 < 0.0001 * 

Tb Tb -4.524×10-3 2.38 0.1404 *** 

Cb Cb + 5.643×10-3 8.62 0.4414 *** 

Fb Fb -------- ---- ------ ---- 

 Interaction 

Pb Tb +2.720 ×10-3 5.81 0.0269 ** 

Pb Cb -4.166 ×10-3 10.41 0.0046 * 

Pb Fb +1.997 ×10-3 2.53 0.128 *** 

Tb Cb ----- --- -----  

Tb Fb + 2.275 ×10-3 0.87 0.3631 *** 

Cb Fb ------ ----- -----  

*P<0.01; **P<0.05; ***P<0.1 

 

The analysis of variance (ANOVA) for the proposed model is summarised in Table 3. This in 

turn shows that the F-value of the model is recorded as 240.38, which indicate that the predictor 

variable has a strong and significant influence on the performance of the model. Moreover, the 

sum of squared error of the model, residual, lack of fit, and pure error are recorded low values of 

8.48x10-3, 5.77x10-5, 5.77x10-5, and 0, respectively. Also, these results are associated with low 

values (C.V) and (PRESS). Consequently, the overall performance of the model as referred to 

the coefficient of determination R2 depicts the R2-predicted of 0.9772 with a plausible 

corroboration with R2-adjusted of 0.9891 with a minor difference of 0.0119.  
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Table 3. ANOVA table of the proposed model  

Variable and source    Df Sum of squares F- value 

Model  11 8.48x10-3 240.38 

Residual  18 5.77x10-5 --- 

Lack of fit  17 5.77x10-5 --- 

Pure error  1 0 --- 

C.V=19%,                                   PRESS=1.94x10-4 

R2- predicted=0. 9772,                R2 -adjusted= 0.9891 

 

The normal probability plot of Figure 2 for the dimethylphenol removal from wastewater using 

RO process shows that the predicted (the proposed model) and actual (experimental results of 

Table 1) values are generally distributed on a straight line, which means that the errors are 

normally distributed as depicted in Figure 2. Interestingly, the predicted values are found to be 

statistically similar to the actual one. Therefore, it is fair to claim that the RSM method is able to 

constitute an accurate model for the prediction of dimethylphenol from wastewater via the RO 

process. Very small differences (high R2) between the predicted values and experimental data 

signify the merits of using the RSM. Additionally, the RSM model is quicker to estimate the 

response compared to other sophisticated mathematical methods. It is important to mention that 

once the RSM model is developed, the calculation of rejection parameter is very fast as it is just 

functions of  operating conditions. Also to demonstrate the robustness of the RSM model, note 

that the obtained results of RSM model are closer to the experimental data compared to other 

models developed in the literature. For instance, the model of Al-Obaidi and Mujtaba16 has 

entailed a higher discrepancy of 11.4% for the removal of chlorophenol from wastewater 

between the model’s predictions and observational data. Moreover, the model of Al-Obaidi et 

al.17 was overestimated the permeate concentration of a maximum of 15% error, which reflects 

the limitation of the previous models.   
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Figure 2. Plot of predicted dimethylphenol rejection against actual one (response) 

 

5. Effect of operating parameters on the dimethylphenol removal 

The performance of any industrial process including RO process can be studied via simulation 

and based on a successful model, which able to forecast the process behavior under the variation 

of operating conditions. In this regard, the simulation of any industrial process has many 

advantages. For instance, it offers a conceptual perception of the influence of individual and 

combined operating conditions on the process responses. Moreover, it would map the selection 

of proper values of operating conditions to sustain the process at elevated performance. Lastly, it 

would aid to optimise the process to attain the most requested objective functions. Interestingly, 

the RSM developed in this research was able to develop a rigorous and simple model to explore 

the removal of dimethylphenol from wastewater without the need of realising the detailed 

R2 = 0.9772 
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transport phenomenon inside the module and guessing the transport parameters of water and 

dimethylphenol of the membrane. More importantly, RSM has relaxed the addiction on complex 

models established in the open literature that are essentially built on strict assumptions besides a 

significant level of arbitrariness. This is already confirmed by Popović et al.27 who used RSM to 

analyse and optimise the enhanced ultrafiltration treatment process of cutting oil wastewater. 

In this section, the model presented in section 4 of dimethylphenol rejection is used to explore 

the influence of the main control variables of RO process on the abatement of dimethylphenol 

from wastewater. This is basically based on the experimental data presented in Table 1. For the 

preceding discussions, it has been decided to analyse the conjugated influence of two parameters 

on the removal of dimethylphenol in three-dimensional contour plots. This would be helpful tool 

in better understanding the interconnection between the operating conditions in a way to 

optimising their contribution in the next studies. It is important to mention that the preceding 

simulation results were plotted using ANOVA.  

Figure 3 shows the conjugated profile of two parameters namely the operating pressure and 

temperature on the removal of dimethylphenol. This in turn showed the significant contribution 

of operating condition on the retention of dimethylphenol. Increasing the operating pressure will 

lead to enhance the permeate flux due to increasing the trans-membrane pressure between the 

two sides of the membrane.   

It is also interesting to observe an opposite contribution of temperature on dimethylphenol 

rejection if compared to pressure (Figure 3). Specifically, the removal of dimethylphenol is 

deteriorated due to elevated temperature for all the tested operating pressure. This deterioration is 

much more pronounced at the highest applied pressure which might be attributed to combining 

two parameters (pressure and temperature) to lift the permeate flux compared to the lowest 
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applied pressure. One would expect this behavior due to increasing the pollutant passage through 

the membrane due to increasing the membrane pore size as a reply to increasing temperature.   

 

 
 

Figure 3. Response surfaces as contour plot of the effect of temperature and pressure on dimethylphenol removal 

 

The influence of feed concentration of dimethylphenol on the removal of dimethylphenol from 

wastewater at different operating pressures is elucidated in the counter plot of Figure 4. As the 

inlet concentration increases, the permeate flux would retard due to increasing the osmotic 

pressure, which entirely decreases the total water recovery (not presented here to economise 

space). However, increasing the feed concentration at the feed channel is much more the one 

accumulated in the permeate channel. Therefore, this would increase the dimethylphenol 

rejection as a consequence of increasing feed channel concentration, which is already pictured in 

Figure 4. Interestingly, the operation of RO process at the lowest feed concentration and 
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increased pressure from 5.83 atm to 13.58 atm has pronounced a higher promotion in 

dimethylphenol rejection compared to the highest feed concentration. This is conceptually 

ascribed to lower concentration polarisation at the lower feed concentration.  

 

 
 

Figure 4. Response surfaces as contour plot of the effect of concentration and pressure on dimethylphenol removal 

 

To neutralise the influence of feed flow rat and pressure on the removal of dimethylphenol, 

Figure 5 exhibits this influence. Insignificant change in dimethylphenol removal is noticed due to 

increasing the feed flow rate for all the tested pressures. The unique behavior of dimethylphenol 

rejection against feed flow rate might attributed to different mechanisms occur with increasing 

feed flow rate. Firstly, increasing bulk velocity would in fact limit the dimethylphenol 

concentration at the membrane wall due to increasing the shear stress. This would promote the 

turbulence inside the feed channel and increases the permeate flux. However, a contrasted 
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mechanism would be occurred as a result to increasing the bulk velocity. Lower residence time 

of water will be the result of increasing the bulk velocity, which means lesser opportunity to 

permeate flux that would contrast the first mechanism. Therefore, it is fair to expect 

inconsiderable influence of feed flow rate on dimethylphenol removal as depicted in Figure 5.  

 

 
 

Figure 5. Response surfaces as contour plot of the effect of feed flow rate and pressure on dimethylphenol removal 

 

Figure 6 illustrates the combined influence of temperature and concentration on dimethylphenol 

retention. This is specifically showed that the dimethylphenol removal is conspicuously 

increased due to growing the feed concentration from 0.82 kmol/m³ to 6.55 kmol/m³ at high 

temperature of 32.5 °C compared to low temperature of 29 °C. This would fit the above findings 

of higher permeate flux at high temperatures, which elaborated a higher promotion of rejection.   
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Figure 6. Response surfaces as contour plot of the effect of concentration and temperature on the dimethylphenol 

removal 

 

Finally, the influences of feed flow rate variation at variable temperature and concentartion on 

dimethylphenol removal are pictured in Figures 7 and 8, respectively. For the first time, the 

impact of temperature is clearly depicted on the dimethylphenol retention following the variation 

of feed flow rate. This is specifically shown a drop of rejection as temperature rises. Therefore, it 

is recommended to implemnt low temperature at any operational feed flow rate. Moreover, 

Figure 8 presents a clear improvement of rejection as feed concentration increases despite 

insignificant change of rejection with increasing feed flow rate.   

   



19 
 

 
 

Figure 7. Response surfaces as contour plot of the effect of feed flow rate and temperature on the dimethylphenol 

removal 
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Figure 8. Response surfaces as contour plot of the effect of feed flow rate and concentration on the dimethylphenol 

removal 

 

6. Conclusions  

Quadratic regression analysis using response surface methodology (RSM) was employed to 

develop an accurate statistical model to forecast the performance of a spiral wound RO process 

to retain dimethylphenol from wastewater. In this respect, RSM developed has considered four 

predictor variables of RO process of operating pressure, concentration, flow rate and temperature 

as input parameters of the model. On the other hand, dimethylphenol rejection has been used as 

the response parameter.  

The following conclusions can be made from the analysis of the proposed model as follows: 

1. The probability for the linear part of the proposed model is less than 0.01, which 

elaborated its consistency.  
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2. The interaction part of the proposed model that signifies the combination of the effect of 

pressure and concentration has more significant with first class of notability compared to 

the combination of the effect of the temperature and concentration of no effect. 

3. The prediction of the proposed model for dimethylphenol rejection showed a high-degree 

of agreement with the experimental data. This is due to the gain of a predicted  R2 of 

0.9772 with the adjucted  R2 of 0.9891 with differnce of 0.0119. 

The research dedicated on appraising the effect of the operating variables on the dimethylphenol 

rejection. It is observed that the pressure and concentration have a positive influence on the 

dimethylphenol removal from wastewater compared to a negative impact of the temperature and 

feed flow rate. Finally, to appraise the validity of the proposed model of RSM with the scale up 

of RO process is recommended for the next research. 

 

Nomenclature 

: Dimethylphenol concentration (kmol/m³) 

: Feed flow rate (m³/s) 

: Feed pressure (atm) 

: Dimethylphenol rejection (dimensionless) 

: Feed temperature (⁰C) 
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Highlights 

1. Response Surface Method forms RO model to remove dimethylphenol from wastewater. 

2. The model validation is realised based on actual data of dimethylphenol removal. 

3. RSM model shows high F-value that pointed out high contribution of the variables. 

4. RSM model depicts R2 of 0.9772 of high-support of the model and experimental data. 

5. Effect of main parameters on dimethylphenol removal analysed by 3D counter plots. 
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Figure 1. Schematic diagram of individual RO system (Adapted from Srinivasan et al.8) 
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Table 1. Experimental results of dimethylphenol removal from wastewater (Adapted from Srinivasan et al.14) 

Pb 

(atm) 

Tb 
(oC) 

Cbx103 

(kmol/m3) 

Fb 

(m3/s) 

Rej 

(-) 

Pb 

(atm) 

Tb 
(oC) 

Cbx103 

(kmol/m3) 

Fb 

(m3/s) 

Rej  

(-) 

5.83 32.5 0.819 0.0002166 0.902 7.77 31 2.455 0.000233 0.928 

7.77 32.5 0.819 0.0002166 0.915 9.71 31 2.455 0.000233 0.944 

9.71 32.5 0.819 0.0002166 0.927 11.64 31 2.455 0.000233 0.950 

11.64 32.5 0.819 0.0002166 0.936 13.58 31 2.455 0.000233 0.956 

13.58 32.5 0.819 0.0002166 0.942 5.83 30 4.092 0.000233 0.936 

5.83 31 1.637 0.0002166 0.919 7.77 30 4.092 0.000233 0.943 

7.77 31 1.637 0.0002166 0.934 9.71 30 4.092 0.000233 0.951 

9.71 31 1.637 0.0002166 0.943 11.64 30 4.092 0.000233 0.957 

11.64 31 1.637 0.0002166 0.949 13.58 30 4.092 0.000233 0.964 

13.58 31 1.637 0.0002166 0.953 7.77 31.5 6.548 0.000233 0.953 

5.83 31 2.455 0.0002166 0.908 9.71 31.5 6.548 0.000233 0.962 

7.77 31 2.455 0.0002166 0.926 11.64 31.5 6.548 0.000233 0.969 

9.71 31 2.455 0.0002166 0.943 13.58 31.5 6.548 0.000233 0.973 

11.64 31 2.455 0.0002166 0.949 5.83 32.5 0.819 0.0002583 0.907 

13.58 31 2.455 0.0002166 0.952 7.77 32.5 0.819 0.0002583 0.92 

5.83 30 4.092 0.0002166 0.935 9.71 32.5 0.819 0.0002583 0.941 

7.77 30 4.092 0.0002166 0.94 11.64 32.5 0.819 0.0002583 0.950 

9.71 30 4.092 0.0002166 0.949 13.58 32.5 0.819 0.0002583 0.959 

11.64 30 4.092 0.0002166 0.955 5.83 31 1.637 0.0002583 0.921 

13.58 30 4.092 0.0002166 0.963 7.77 31 1.637 0.0002583 0.937 

7.77 31.5 6.548 0.0002166 0.952 9.71 31 1.637 0.0002583 0.943 

9.71 31.5 6.548 0.0002166 0.962 11.64 31 1.637 0.0002583 0.948 

11.64 31.5 6.548 0.0002166 0.97 13.58 31 1.637 0.0002583 0.951 

13.58 31.5 6.548 0.0002166 0.973 5.83 31 2.455 0.0002583 0.917 

5.83 32.5 0.819 0.000233 0.903 7.77 31 2.455 0.0002583 0.931 

7.77 32.5 0.819 0.000233 0.915 9.71 31 2.455 0.0002583 0.944 

9.71 32.5 0.819 0.000233 0.93 11.64 31 2.455 0.0002583 0.953 

11.64 32.5 0.819 0.000233 0.935 13.58 31 2.455 0.0002583 0.958 

13.58 32.5 0.819 0.000233 0.948 9.71 29 4.092 0.0002583 0.953 

5.83 31 1.637 0.000233 0.919 11.64 29 4.092 0.0002583 0.958 

7.77 31 1.637 0.000233 0.935 13.58 29 4.092 0.0002583 0.965 

9.71 31 1.637 0.000233 0.943 5.83 31.5 6.548 0.0002583 0.946 

11.64 31 1.637 0.000233 0.949 7.77 31.5 6.548 0.0002583 0.954 

13.58 31 1.637 0.000233 0.953 9.71 31.5 6.548 0.0002583 0.963 

5.83 31 2.455 0.000233 0.917 11.64 31.5 6.548 0.0002583 0.969 
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Table 2. Regression coefficients of the predicted quadratic polynomial model for response variables 

Predictors Coefficient (β) F-value Probability Notability 

Intercept +0.95 --- 0.0001 * 

 Linear 

Pb +0.015 388.39 0.0001 * 

Tb - 9.374×10-3 7.23 0.0150 ** 

Cb + 0.012 28.27 0.0001 * 

Fb - 7.122 ×10-5 0.00175 0.9670 *** 

 Quadratic 

Pb Pb - 4.592×10-3 32.23 0.0001 < 0.000 < 0.0001 * 

Tb Tb -4.524×10-3 2.38 0.1404 *** 

Cb Cb + 5.643×10-3 8.62 0.4414 *** 

Fb Fb -------- ---- ------ ---- 

 Interaction 

Pb Tb +2.720 ×10-3 5.81 0.0269 ** 

Pb Cb -4.166 ×10-3 10.41 0.0046 * 

Pb Fb +1.997 ×10-3 2.53 0.128 *** 

Tb Cb ----- --- -----  

Tb Fb + 2.275 ×10-3 0.87 0.3631 *** 

Cb Fb ------ ----- -----  

*P<0.01; **P<0.05; ***P<0.1 

 

 

Table 3. ANOVA table of the proposed model  

Variable and source    Df Sum of squares F- value 

Model  11 8.48x10-3 240.38 

Residual  18 5.77x10-5 --- 

Lack of fit  17 5.77x10-5 --- 

Pure error  1 0 --- 

C.V=19%,                                   PRESS=1.94x10-4 

R2- predicted=0. 9772,                R2 -adjusted= 0.9891 

 

 

 

 

 

 

 



29 
 

 

 

Figure 2. Plot of predicted dimethylphenol rejection against actual one (response) 

 

 

R2 = 0.9772 
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Figure 3. Response surfaces as contour plot of the effect of temperature and pressure on dimethylphenol removal 
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Figure 4. Response surfaces as contour plot of the effect of concentration and pressure on dimethylphenol removal 
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Figure 5. Response surfaces as contour plot of the effect of feed flow rate and pressure on dimethylphenol removal 
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Figure 6. Response surfaces as contour plot of the effect of concentration and temperature on the dimethylphenol 

removal 
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Figure 7. Response surfaces as contour plot of the effect of feed flow rate and temperature on the dimethylphenol 

removal 
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Figure 8. Response surfaces as contour plot of the effect of feed flow rate and concentration on the dimethylphenol 

removal 

 

 


