301 research outputs found

    Heuristic Computation of Periodic-Review Base Stock Inventory Policies

    Full text link
    Heuristic Computation of Periodic-Review Base Stock Inventory Policie

    Stock Optimization in Emergency Resupply Networks under Stuttering Poisson Demand

    Full text link
    We consider a network in which field stocking locations (FSLs) manage multiple parts according to an (S-1,S) policy. Demand processes for the parts are assumed to be independent stuttering Poisson processes. Regular replenishments to an FSL occur from a regional stocking location (RSL) that has an unlimited supply of each part type. Demand in excess of supply at an FSL is routed to an emergency stocking location (ESL), which also employs an (S-1,S) policy to manage its inventory. Demand in excess of supply at the ESL is backordered. Lead time from the ESL to each FSL is assumed to be negligible compared to the RSL-ESL resupply time. In companion papers we have shown how to approximate the joint probability distributions of units on hand, units in regular resupply, and units in emergency resupply. In this paper, we focus on the problem of determining the stock levels at the FSLs and ESL across all part numbers that minimize backorder, and emergency resupply costs subject to an inventory investment budget constraint. The problem is shown to be a nonconvex integer programming problem, and we explore a collection of heuristics for solving the optimization problem

    Optimizing Inventory in a Multi-Echelon Multi-Item Supply Chain with Time-Based Customer Service Level Agreements

    Full text link
    Optimizing Inventory in a Multi-Echelon Multi-Item Supply Chain with Time-Based Customer Service Level Agreement

    COVID-19 Models for Hospital Surge Capacity Planning: A Systematic Review

    Get PDF
    Objective: Health system preparedness for coronavirus disease (COVID-19) includes projecting the number and timing of cases requiring various types of treatment. Several tools were developed to assist in this planning process. This review highlights models that project both caseload and hospital capacity requirements over time. Methods: We systematically reviewed the medical and engineering literature according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We completed searches using PubMed, EMBASE, ISI Web of Science, Google Scholar, and the Google search engine. Results: The search strategy identified 690 articles. For a detailed review, we selected 6 models that met our predefined criteria. Half of the models did not include age-stratified parameters, and only 1 included the option to represent a second wave. Hospital patient flow was simplified in all models; however, some considered more complex patient pathways. One model included fatality ratios with length of stay (LOS) adjustments for survivors versus those who die, and accommodated different LOS for critical care patients with or without a ventilator. Conclusion: The results of our study provide information to physicians, hospital administrators, emergency response personnel, and governmental agencies on available models for preparing scenario-based plans for responding to the COVID-19 or similar type of outbreak

    Approximation algorithms and hardness results for the joint replenishment Problepm with constant demands

    Get PDF
    19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. ProceedingsIn the Joint Replenishment Problem (JRP), the goal is to coordinate the replenishments of a collection of goods over time so that continuous demands are satisfied with minimum overall ordering and holding costs. We consider the case when demand rates are constant. Our main contribution is the first hardness result for any variant of JRP with constant demands. When replenishments per commodity are required to be periodic and the time horizon is infinite (which corresponds to the so-called general integer model with correction factor), we show that finding an optimal replenishment policy is at least as hard as integer factorization. This result provides the first theoretical evidence that the JRP with constant demands may have no polynomial-time algorithm and that relaxations and heuristics are called for. We then show that a simple modification of an algorithm by Wildeman et al. (1997) for the JRP gives a fully polynomial-time approximation scheme for the general integer model (without correction factor). We also extend their algorithm to the finite horizon case, achieving an approximation guarantee asymptotically equal to √9/8
    • …
    corecore