235 research outputs found

    Design and performance of the ADMX SQUID-based microwave receiver

    Get PDF
    The Axion Dark Matter eXperiment (ADMX) was designed to detect ultra-weakly interacting relic axion particles by searching for their conversion to microwave photons in a resonant cavity positioned in a strong magnetic field. Given the extremely low expected axion-photon conversion power we have designed, built and operated a microwave receiver based on a Superconducting QUantum Interference Device (SQUID). We describe the ADMX receiver in detail as well as the analysis of narrow band microwave signals. We demonstrate the sustained use of a SQUID amplifier operating between 812 and 860 MHz with a noise temperature of 1 K. The receiver has a noise equivalent power of 1.1x10^-24 W/sqrt(Hz) in the band of operation for an integration time of 1.8x10^3 s.Comment: 8 pages, 12 figures, Submitted to Nuclear Inst. and Methods in Physics Research,

    Recovery of the Schwarzschild Metric in Theories with Localized Gravity Beyond Linear Order

    Full text link
    We solve the Einstein equations in the Randall-Sundrum framework with a static, spherically symmetric matter distribution on the {\it physical brane} and obtain an approximate expression for the gravitational field outside the source to second order in the gravitational coupling. This expression when confined on the {\it physical brane} coincides with the standard form of the Schwarzschild metric. Therefore, the Randall-Sundrum scenario is consistent with the Mercury precession test of General Relativity.Comment: 17 pages, plain Tex, references added, typos correcte

    Harvest and storage of two perennial grasses as biomass feedstocks

    Get PDF
    ABSTRACT. Some perennial grasses, such as reed canarygrass (RCG) n North America, the main feedstock for fuel ethanol is currently corn grain. New enzyme hydrolysis and fermentation technologies are being developed to produce ethanol from cellulosic biomass such as grasses, straw, and wood. The energy balance for these materials has the potential to be much more favorable than with corn grain One production variable that needs to be considered with perennial grasses to be used as biomass feedstocks is cutting frequency. Since high forage quality for livestock production is not required, it may be more economical to harvest perennial grasses once per year

    Constraining Bosonic Supersymmetry from Higgs results and 8 TeV ATLAS multi-jets plus missing energy data

    Full text link
    The collider phenomenology of models with Universal Extra Dimensions (UED) is surprisingly similar to that of supersymmetric (SUSY) scenarios. For each level-1 bosonic (fermionic) Kaluza-Klein (KK) state, there is a fermionic (bosonic) analog in SUSY and thus UED scenarios are often known as bosonic supersymmetry. The minimal version of UED (mUED) gives rise to a quasi-degenerate particle spectrum at each KK-level and thus, can not explain the enhanced Higgs to diphoton decay rate hinted by the ATLAS collaboration of the Large Hadron Collider (LHC) experiment. However, in the non-minimal version of the UED (nmUED) model, the enhanced Higgs to diphoton decay rate can be easily explained via the suitable choice of boundary localized kinetic (BLK) terms for higher dimensional fermions and gauge bosons. BLK terms remove the degeneracy in the KK mass spectrum and thus, pair production of level-1 quarks and gluons at the LHC gives rise to hard jets, leptons and large missing energy in the final state. These final states are studied in details by the ATLAS and CMS collaborations in the context of SUSY scenarios. We find that the absence of any significant deviation of the data from the Standard Model (SM) prediction puts a lower bound of about 2.1 TeV on equal mass excited quarks and gluons.Comment: 19 page

    Systematics of Coupling Flows in AdS Backgrounds

    Get PDF
    We give an effective field theory derivation, based on the running of Planck brane gauge correlators, of the large logarithms that arise in the predictions for low energy gauge couplings in compactified AdS}_5 backgrounds, including the one-loop effects of bulk scalars, fermions, and gauge bosons. In contrast to the case of charged scalars coupled to Abelian gauge fields that has been considered previously in the literature, the one-loop corrections are not dominated by a single 4D Kaluza-Klein mode. Nevertheless, in the case of gauge field loops, the amplitudes can be reorganized into a leading logarithmic contribution that is identical to the running in 4D non-Abelian gauge theory, and a term which is not logarithmically enhanced and is analogous to a two-loop effect in 4D. In a warped GUT model broken by the Higgs mechanism in the bulk,we show that the matching scale that appears in the large logarithms induced by the non-Abelian gauge fields is m_{XY}^2/k where m_{XY} is the bulk mass of the XY bosons and k is the AdS curvature. This is in contrast to the UV scale in the logarithmic contributions of scalars, which is simply the bulk mass m. Our results are summarized in a set of simple rules that can be applied to compute the leading logarithmic predictions for coupling constant relations within a given warped GUT model. We present results for both bulk Higgs and boundary breaking of the GUT gauge group.Comment: 22 pages, LaTeX, 3 figures. Comments and references adde

    Bounds on models with one latticized extra dimension

    Get PDF
    We study an extension of the standard model with one latticized extra dimension accessible to all fields. The model is characterized by the size of the extra dimension and the number of sites, and contains a tower of massive particles. At energies lower than the mass of the new particles there are no tree-level effects. Therefore, bounds on the scale of new physics can only be set from one-loop processes. We calculate several observables sensitive to loop-effects, such as the ρ\rho parameter, bsγb\to s \gamma, ZbbˉZ\to b\bar b, and the B0Bˉ0B^0\rightleftharpoons\bar{B}^0 mixing, and use them to set limits on the lightest new particles for different number of sites. It turns out that the continuous result is rapidly reached when the extra dimension is discretized in about 10 to 20 sites only. For small number of sites the bounds placed on the usual continuous scenario can be reduced by roughly a factor of 10%--25%, which means that the new particles can be as light as 320GeV320 {GeV}. Finally, we briefly discuss an alternative model in which fermions do not have additional modes.Comment: 23 pages, 6 figure

    Running Scaling Dimensions in Holographic Renormalization Group Flows

    Full text link
    Holographic renormalization group flows can be interpreted in terms of effective field theory. Based on such an interpretation, a formula for the running scaling dimensions of gauge-invariant operators along such flows is proposed. The formula is checked for some simple examples from the AdS/CFT correspondence, but can be applied also in non-AdS/non-CFT cases.Comment: 14 pages, 2 figure

    Deciphering Universal Extra Dimension from the top quark signals at the CERN LHC

    Get PDF
    Models based on Universal Extra Dimensions predict Kaluza-Klein (KK) excitations of all Standard Model (SM) particles. We examine the pair production of KK excitations of top- and bottom-quarks at the Large Hadron Collider. Once produced, the KK top/bottom quarks can decay to bb-quarks, leptons and the lightest KK-particle, γ1\gamma_1, resulting in 2 bb-jets, two opposite sign leptons and missing transverse momentum, thereby mimicing top-pair production. We show that, with a proper choice of kinematic cuts, an integrated luminosity of 100 fb1^{-1} would allow a discovery for an inverse radius upto R1=750R^{-1} = 750 GeV.Comment: 18 pages, 14 figures, Accepted for publication in JHE

    Phases of N=1 Supersymmetric SO/Sp Gauge Theories via Matrix Model

    Get PDF
    We extend the results of Cachazo, Seiberg and Witten to N=1 supersymmetric gauge theories with gauge groups SO(2N), SO(2N+1) and Sp(2N). By taking the superpotential which is an arbitrary polynomial of adjoint matter \Phi as a small perturbation of N=2 gauge theories, we examine the singular points preserving N=1 supersymmetry in the moduli space where mutually local monopoles become massless. We derive the matrix model complex curve for the whole range of the degree of perturbed superpotential. Then we determine a generalized Konishi anomaly equation implying the orientifold contribution. We turn to the multiplication map and the confinement index K and describe both Coulomb branch and confining branch. In particular, we construct a multiplication map from SO(2N+1) to SO(2KN-K+2) where K is an even integer as well as a multiplication map from SO(2N) to SO(2KN-2K+2) (K is a positive integer), a map from SO(2N+1) to SO(2KN-K+2) (K is an odd integer) and a map from Sp(2N) to Sp(2KN+2K-2). Finally we analyze some examples which show some duality: the same moduli space has two different semiclassical limits corresponding to distinct gauge groups.Comment: 55pp; two paragraphs in page 19 added to clarify the relation between confinement index and multiplication map index, refs added and to appear in JHEP; Konishi anomaly equations corrected and some comments on the degenerated cases for SO(7) and SO(8) adde
    corecore