108 research outputs found

    Identification of markers associated with bacterial blight resistance loci in cowpea (Vigna unguiculata (L.) Walp.)

    Get PDF
    Cowpea bacterial blight (CoBB), caused by Xanthomonas axonopodis pv. vignicola (Xav), is a worldwide major disease of cowpea [Vigna unguiculata (L.) Walp.]. Among different strategies to control the disease including cultural practices, intercropping, application of chemicals, and sowing pathogen-free seeds, planting of cowpea genotypes with resistance to the pathogen would be the most attractive option to the resource poor cowpea farmers in sub-Saharan Africa. Breeding resistance cultivars would be facilitated by marker-assisted selection (MAS). In order to identify loci with effects on resistance to this pathogen and map QTLs controlling resistance to CoBB, eleven cowpea genotypes were screened for resistance to bacterial blight using 2 virulent Xav18 and Xav19 strains isolated from Kano (Nigeria). Two cowpea genotypes Danila and Tvu7778 were identified to contrast in their responses to foliar disease expression following leaf infection with pathogen. A set of recombinant inbred lines (RILs) comprising 113 individuals derived from Danila (resistant parent) and Tvu7778 (susceptible parent) were infected with CoBB using leaf inoculation method. The experiments were conducted under greenhouse conditions (2007 and 2008) and disease severity was visually assessed using a scale where 0 = no disease and 4 = maximum susceptibility with leaf drop. A single nucleotide polymorphism (SNP) genetic map with 282 SNP markers constructed from the same RIL population was used to perform QTL analysis. Using Kruskall-Wallis and Multiple-QTL model of MapQTL 5, three QTLs, CoBB-1, CoBB-2 and CoBB-3 were identified on linkage group LG3, LG5 and LG9 respectively showing that potential resistance candidate genes cosegregated with CoBB resistance phenotypes. Two of the QTLs CoBB-1, CoBB-2 were consistently confirmed in the two experiments accounting for up to 22.1 and to 17.4% respectively for the first and second experiments. Whereas CoBB-3 was only discovered for the first experiment (2007) with less phenotypic variation explained of about 10%. Our results represent a resource for molecular marker development that can be used for marker assisted selection of bacterial blight resistance in cowpe

    Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea

    Get PDF
    CowpeaThe stay-green phenomenon is a key plant trait with wide usage in managing crop production under limited water conditions. This trait enhances delayed senescence, biomass, and grain yield under drought stress. In this study we sought to identify QTLs in cowpea (Vigna unguiculata) consistent across experiments conducted in Burkina Faso, Nigeria, Senegal, and the United States of America under limited water conditions. A panel of 383 diverse cowpea accessions and a recombinant inbred line population (RIL) were SNP genotyped using an Illumina 1536 GoldenGate assay. Phenotypic data from thirteen experiments conducted across the four countries were used to identify SNP-trait associations based on linkage disequilibrium association mapping, with bi-parental QTL mapping as a complementary strategy. We identified seven loci, five of which exhibited evidence suggesting pleiotropic effects (stay-green) between delayed senescence, biomass, and grain yield. Further, we provide evidence suggesting the existence of positive pleiotropy in cowpea based on positively correlated mean phenotypic values (0.34, r ,0.87) and allele effects (0.07, r ,0.86) for delayed senescence and grain yield across three African environments. Three of the five putative stay-green QTLs, Dro-1, 3, and 7 were identified in both RILs and diverse germplasm with resolutions of 3.2 cM or less for each of the three loci, suggesting that these may be valuable targets for marker-assisted breeding in cowpea. Also, the co-location of early vegetative delayed senescence with biomass and grain yield QTLs suggests the possibility of using delayed senescence at the seedling stage as a rapid screening tool for post-flowering drought tolerance in cowpea breeding. BLAST analysis using EST sequences harboring SNPs with the highest associations provided a genomic context for loci identified in this study in closely related common bean (Phaseolus vulgaris) and soybean (Glycine max) reference genomes

    Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Macrophomina phaseolina </it>is an emerging and devastating fungal pathogen that causes significant losses in crop production under high temperatures and drought stress. An increasing number of disease incidence reports highlight the wide prevalence of the pathogen around the world and its contribution toward crop yield suppression. In cowpea [<it>Vigna unguiculata </it>(L) Walp.], limited sources of low-level host resistance have been identified, the genetic basis of which is unknown. In this study we report on the identification of strong sources of host resistance to <it>M. phaseolina </it>and the genetic mapping of putative resistance loci on a cowpea genetic map comprised of gene-derived single nucleotide polymorphisms (SNPs) and amplified fragment length polymorphisms (AFLPs).</p> <p>Results</p> <p>Nine quantitative trait loci (QTLs), accounting for between 6.1 and 40.0% of the phenotypic variance (R<sup>2</sup>), were identified using plant mortality data taken over three years in field experiments and disease severity scores taken from two greenhouse experiments. Based on annotated genic SNPs as well as synteny with soybean (<it>Glycine max</it>) and <it>Medicago truncatula</it>, candidate resistance genes were found within mapped QTL intervals. QTL <it>Mac-2 </it>explained the largest percent R<sup>2 </sup>and was identified in three field and one greenhouse experiments where the QTL peak co-located with a SNP marker derived from a pectin esterase inhibitor encoding gene. Maturity effects on the expression of resistance were indicated by the co-location of <it>Mac-6 </it>and <it>Mac-7 </it>QTLs with maturity-related senescence QTLs <it>Mat-2 </it>and <it>Mat-1</it>, respectively. Homologs of the <it>ELF4 </it>and <it>FLK </it>flowering genes were found in corresponding syntenic soybean regions. Only three <it>Macrophomina </it>resistance QTLs co-located with delayed drought-induced premature senescence QTLs previously mapped in the same population, suggesting that largely different genetic mechanisms mediate cowpea response to drought stress and <it>Macrophomina </it>infection.</p> <p>Conclusion</p> <p>Effective sources of host resistance were identified in this study. QTL mapping and synteny analysis identified genomic loci harboring resistance factors and revealed candidate genes with potential for further functional genomics analysis.</p

    QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]

    Get PDF
    Three quantitative trait loci (QTL) for resistance to Thrips tabaci and Frankliniella schultzei were identified using a cowpea recombinant inbred population of 127 F2:8 lines. An amplified fragment length polymorphism (AFLP) genetic linkage map and foliar feeding damage ratings were used to identify genomic regions contributing toward resistance to thrips damage. Based on Pearson correlation analysis, damage ratings were highly correlated (r ≥ 0.7463) across seven field experiments conducted in 2006, 2007, and 2008. Using the Kruskall–Wallis and Multiple-QTL model mapping packages of MapQTL 4.0 software, three QTL, Thr-1, Thr-2, and Thr-3, were identified on linkage groups 5 and 7 accounting for between 9.1 and 32.1% of the phenotypic variance. AFLP markers ACC-CAT7, ACG-CTC5, and AGG-CAT1 co-located with QTL peaks for Thr-1, Thr-2, and Thr-3, respectively. Results of this study will provide a resource for molecular marker development and the genetic characterization of foliar thrips resistance in cowpea

    Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]

    Get PDF
    Quantitative trait loci (QTL) studies provide insight into the complexity of drought tolerance mechanisms. Molecular markers used in these studies also allow for marker-assisted selection (MAS) in breeding programs, enabling transfer of genetic factors between breeding lines without complete knowledge of their exact nature. However, potential for recombination between markers and target genes limit the utility of MAS-based strategies. Candidate gene mapping offers an alternative solution to identify trait determinants underlying QTL of interest. Here, we used restriction site polymorphisms to investigate co-location of candidate genes with QTL for seedling drought stress-induced premature senescence identified previously in cowpea. Genomic DNA isolated from 113 F2:8 RILs of drought-tolerant IT93K503-1 and drought susceptible CB46 genotypes was digested with combinations of EcoR1 and HpaII, Mse1, or Msp1 restriction enzymes and amplified with primers designed from 13 drought-responsive cDNAs. JoinMap 3.0 and MapQTL 4.0 software were used to incorporate polymorphic markers onto the AFLP map and to analyze their association with the drought response QTL. Seven markers co-located with peaks of previously identified QTL. Isolation, sequencing, and blast analysis of these markers confirmed their significant homology with drought or other abiotic stress-induced expressed sequence tags (EST) from cowpea and other plant systems. Further, homology with coding sequences for a multidrug resistance protein 3 and a photosystem I assembly protein ycf3 was revealed in two of these candidates. These results provide a platform for the identification and characterization of genetic trait determinants underlying seedling drought tolerance in cowpea

    The GCP molecular marker toolkit, an instrument for use in breeding food security crops

    Get PDF
    Crop genetic resources carry variation useful for overcoming the challenges of modern agriculture. Molecular markers can facilitate the selection of agronomically important traits. The pervasiveness of genomics research has led to an overwhelming number of publications and databases, which are, nevertheless, scattered and hence often difficult for plant breeders to access, particularly those in developing countries. This situation separates them from developed countries, which have better endowed programs for developing varieties. To close this growing knowledge gap, we conducted an intensive literature review and consulted with more than 150 crop experts on the use of molecular markers in the breeding program of 19 food security crops. The result was a list of effectively used and highly reproducible sequence tagged site (STS), simple sequence repeat (SSR), single nucleotide polymorphism (SNP), and sequence characterized amplified region (SCAR) markers. However, only 12 food crops had molecular markers suitable for improvement. That is, marker-assisted selection is not yet used for Musa spp., coconut, lentils, millets, pigeonpea, sweet potato, and yam. For the other 12 crops, 214 molecular markers were found to be effectively used in association with 74 different traits. Results were compiled as the GCP Molecular Marker Toolkit, a free online tool that aims to promote the adoption of molecular approaches in breeding activities

    Saturation of an Intra-Gene Pool Linkage Map: Towards a Unified Consensus Linkage Map for Fine Mapping and Synteny Analysis in Common Bean

    Get PDF
    Map-based cloning and fine mapping to find genes of interest and marker assisted selection (MAS) requires good genetic maps with reproducible markers. In this study, we saturated the linkage map of the intra-gene pool population of common bean DOR364×BAT477 (DB) by evaluating 2,706 molecular markers including SSR, SNP, and gene-based markers. On average the polymorphism rate was 7.7% due to the narrow genetic base between the parents. The DB linkage map consisted of 291 markers with a total map length of 1,788 cM. A consensus map was built using the core mapping populations derived from inter-gene pool crosses: DOR364×G19833 (DG) and BAT93×JALO EEP558 (BJ). The consensus map consisted of a total of 1,010 markers mapped, with a total map length of 2,041 cM across 11 linkage groups. On average, each linkage group on the consensus map contained 91 markers of which 83% were single copy markers. Finally, a synteny analysis was carried out using our highly saturated consensus maps compared with the soybean pseudo-chromosome assembly. A total of 772 marker sequences were compared with the soybean genome. A total of 44 syntenic blocks were identified. The linkage group Pv6 presented the most diverse pattern of synteny with seven syntenic blocks, and Pv9 showed the most consistent relations with soybean with just two syntenic blocks. Additionally, a co-linear analysis using common bean transcript map information against soybean coding sequences (CDS) revealed the relationship with 787 soybean genes. The common bean consensus map has allowed us to map a larger number of markers, to obtain a more complete coverage of the common bean genome. Our results, combined with synteny relationships provide tools to increase marker density in selected genomic regions to identify closely linked polymorphic markers for indirect selection, fine mapping or for positional cloning

    High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera.</p> <p>Results</p> <p>We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of <it>Eucalyptus </it>from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for <it>E. grandis</it>. A systematic assessment of <it>in silico </it>SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous <it>in silico </it>constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species.</p> <p>SNP reliability was high across nine <it>Eucalyptus </it>species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased.</p> <p>Conclusions</p> <p>This study indicates that the GGGT performs well both within and across species of <it>Eucalyptus </it>notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across multiple <it>Eucalyptus </it>species is feasible, although strongly dependent on having a representative and sufficiently deep collection of sequences from many individuals of each target species. A higher density SNP platform will be instrumental to undertake genome-wide phylogenetic and population genomics studies and to implement molecular breeding by Genomic Selection in <it>Eucalyptus</it>.</p
    corecore