17 research outputs found

    Guidance on noncorticosteroid systemic immunomodulatory therapy in noninfectious uveitis: fundamentals of care for uveitis (focus) initiative

    Get PDF
    Topic: An international, expert-led consensus initiative to develop systematic, evidence-based recommendations for the treatment of noninfectious uveitis in the era of biologics. Clinical Relevance: The availability of biologic agents for the treatment of human eye disease has altered practice patterns for the management of noninfectious uveitis. Current guidelines are insufficient to assure optimal use of noncorticosteroid systemic immunomodulatory agents. Methods: An international expert steering committee comprising 9 uveitis specialists (including both ophthalmologists and rheumatologists) identified clinical questions and, together with 6 bibliographic fellows trained in uveitis, conducted a Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol systematic reviewof the literature (English language studies from January 1996 through June 2016; Medline [OVID], the Central Cochrane library, EMBASE,CINAHL,SCOPUS,BIOSIS, andWeb of Science). Publications included randomized controlled trials, prospective and retrospective studies with sufficient follow-up, case series with 15 cases or more, peer-reviewed articles, and hand-searched conference abstracts from key conferences. The proposed statements were circulated among 130 international uveitis experts for review.Atotal of 44 globally representativegroupmembersmet in late 2016 to refine these guidelines using a modified Delphi technique and assigned Oxford levels of evidence. Results: In total, 10 questions were addressed resulting in 21 evidence-based guidance statements covering the following topics: when to start noncorticosteroid immunomodulatory therapy, including both biologic and nonbiologic agents; what data to collect before treatment; when to modify or withdraw treatment; how to select agents based on individual efficacy and safety profiles; and evidence in specific uveitic conditions. Shared decision-making, communication among providers and safety monitoring also were addressed as part of the recommendations. Pharmacoeconomic considerations were not addressed. Conclusions: Consensus guidelines were developed based on published literature, expert opinion, and practical experience to bridge the gap between clinical needs and medical evidence to support the treatment of patients with noninfectious uveitis with noncorticosteroid immunomodulatory agents

    Atomistic simulations of charge transport in photoswitchable organic-graphene hybrids

    No full text
    Photoswitchable self-assembled monolayers (SAMs) in contact with a conductive or semiconductive layer can be used to remotely trigger changes in electrical current using light. In this study, we apply full-atomistic simulations to assess the changes in electronic structure and charge-transport properties of a graphene sheet in contact with an amorphous silica dielectric decorated by an azobenzene SAM. The simulations explicitly account for the structural and electrostatic disorder sourced by the dielectric, which turns out to be weakly affected by photoisomerization and spatially correlated over a length scale of 4–5 nm. Most interestingly, by combining large-scale (tight binding) density functional theory with Kubo–Greenwood quantum transport calculations, we predict that the trans-cis isomerization should induce a shift in surface electrostatic potential by a few tenths of a volt, accompanied by a variation in conductivity by a factor of about 3

    Surgical Support for Severe COVID-19 Patients: A Retrospective Cohort Study in a French High-Density COVID-19 Cluster

    No full text
    Background. The COVID-19 epidemic has resulted in a massive surge in the need for intensive care unit (ICU) care. To avoid being overwhelmed, hospitals had to adapt and support the ICU teams in structured ICU care including involving surgical teams. This work aims at describing the collaborative efforts between the ICU care team and the Surgical Task Force (STF) during a surge of ICU activity in a University Hospital in a French high-density COVID-19 cluster. Study Design. This retrospective single center study analyzed the STF workflow and the ICU population. The study included 55 patients hospitalized in our ICU, ICU-converted step-down units, and post-anesthesia care units. The primary measure was the global daily STF activity. The secondary measure was the daily activity for each of the 5 tasks accomplished by the STF. Results. The STF attempted 415 phone calls for 55 patients’ families, 237 mobilizations of patients requiring prone positions, follow-up of 20 patients requiring medevac, and contribution to ethical discussion for 2 patients. The mean (SD) daily number of successful phones calls, ethical discussions, mobilizations of patients requiring prone positions and medevac follow-up were 18 (7), .1 (.4), 10 (7), and 2 (3), respectively. No actions for discharge summaries writing were required. The maximum number of daily mobilizations for patients requiring prone positions was 25. The maximum number of daily attempted phone calls and successful phone calls were 37 and 26, respectively. Conclusion. Surgeons’ technical and nontechnical skills represented an effective support for ICU teams during the COVID-19 pandemic

    Canagliflozin protects against sepsis capillary leak syndrome by activating endothelial α1AMPK.

    No full text
    Sepsis capillary leak syndrome (SCLS) is an independent prognostic factor for poor sepsis outcome. We previously demonstrated that α1AMP-activated protein kinase (α1AMPK) prevents sepsis-induced vascular hyperpermeability by mechanisms involving VE-cadherin (VE-Cad) stabilization and activation of p38 mitogen activated protein kinase/heat shock protein of 27 kDa (p38MAPK/HSP27) pathway. Canagliflozin, a sodium-glucose co-transporter 2 inhibitor, has recently been proven to activate AMPK in endothelial cells. Therefore, we hypothesized that canagliflozin could be of therapeutic potential in patients suffering from SCLS. We herein report that canagliflozin, used at clinically relevant concentrations, counteracts lipopolysaccharide-induced vascular hyperpermeability and albumin leakage in wild-type, but not in endothelial-specific α1AMPK-knockout mice. In vitro, canagliflozin was demonstrated to activate α1AMPK/p38MAPK/HSP27 pathway and to preserve VE-Cad's integrity in human endothelial cells exposed to human septic plasma. In conclusion, our data demonstrate that canagliflozin protects against SCLS via an α1AMPK-dependent pathway, and lead us to consider novel therapeutic perspectives for this drug in SCLS

    P180: Intérêt de la modulation du microbiote intestinal par les oligosaccharides non digestibles dans le contrôle de la leucémie et de la cachexie cancéreuse

    Full text link
    Il est à présent clairement établi que l’ensemble des bactéries présentes dans l’intestin (le microbiote intestinal) est capable d’influencer l’homéostasie énergétique et immunitaire de son hôte. Nous avons testé l’hypothèse selon laquelle une modulation du microbiote intestinal par des oligosaccharides issus de la pectine (POS) ou de l’inuline (INU) permet d’interférer avec la progression de la leucémie et des désordres métaboliques associés

    4-Oxo-1,4-dihydropyridines as selective CBâ‚‚ cannabinoid receptor ligands. Part 2: discovery of new agonists endowed with protective effect against experimental colitis

    No full text
    Further on to our earlier work on the 4-oxo-1,4-dihydropyridine, we describe herein our strategy to get access to potent selective CB2 receptor agonists. Thus, we designed and synthesized 29 compounds, evaluated on both hCB1 and hCB2 cannabinoid receptors, and assessed 11 of them in the TNBS-induced colitis model in mice. Compound 48 was found to be the most efficient of our series, exhibiting an exquisite protection against experimental colitis, superior to the one observed after treatment with Pentasa

    Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice

    Get PDF
    We tested the hypothesis that changing the gut microbiota using pectic oligosaccharides (POS) or inulin (INU) differently modulates the progression of leukemia and related metabolic disorders. Mice were transplanted with Bcr-Abl-transfected proB lymphocytes mimicking leukemia and received either POS or INU in their diet (5%) for 2 weeks. Combination of pyrosequencing, PCR-DGGE and qPCR analyses of the 16S rRNA gene revealed that POS decreased microbial diversity and richness of caecal microbiota whereas it increased Bifidobacterium spp., Roseburia spp. and Bacteroides spp. (affecting specifically B. dorei) to a higher extent than INU. INU supplementation increased the portal SCFA propionate and butyrate, and decreased cancer cell invasion in the liver. POS treatment did not affect hepatic cancer cell invasion, but was more efficient than INU to decrease the metabolic alterations. Indeed, POS better than INU delayed anorexia linked to cancer progression. In addition, POS treatment increased acetate in the caecal content, changed the fatty acid profile inside adipose tissue and counteracted the induction of markers controlling β-oxidation, thereby hampering fat mass loss. Non digestible carbohydrates with prebiotic properties may constitute a new nutritional strategy to modulate gut microbiota with positive consequences on cancer progression and associated cachexia

    Identification of new enterosynes using prebiotics: roles of bioactive lipids and mu-opioid receptor signalling in humans and mice.

    No full text
    OBJECTIVE: The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes. DESIGN: We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human. RESULTS: We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor Îł for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic. CONCLUSIONS: Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human

    Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status

    No full text
    Obesity is associated with a cluster of metabolic disorders, low-grade inflammation and altered gut microbiota. Whether host metabolism is controlled by intestinal innate immune system and the gut microbiota is unknown. Here we report that inducible intestinal epithelial cell-specific deletion of MyD88 partially protects against diet-induced obesity, diabetes and inflammation. This is associated with increased energy expenditure, an improved glucose homeostasis, reduced hepatic steatosis, fat mass and inflammation. Protection is transferred following gut microbiota transplantation to germ-free recipients. We also demonstrate that intestinal epithelial MyD88 deletion increases anti-inflammatory endocannabinoids, restores antimicrobial peptides production and increases intestinal regulatory T cells during diet-induced obesity. Targeting MyD88 after the onset of obesity reduces fat mass and inflammation. Our work thus identifies intestinal epithelial MyD88 as a sensor changing host metabolism according to the nutritional status and we show that targeting intestinal epithelial MyD88 constitutes a putative therapeutic target for obesity and related disorders
    corecore