20 research outputs found

    Atud Gabbro-Diorite Complex: Glimpse of the Cryogenian Mixing, Assimilation, Storage, and Homogenization Zone beneath the Eastern Desert of Egypt

    Get PDF
    We analysed gabbroic and dioritic rocks from the Atud igneous complex in the Eastern Desert of Egypt to understand better the formation of juvenile continental crust of the Arabian–Nubian Shield. Our results show that the rocks are the same age (U–Pb zircon ages of 694.5 ± 2.1 Ma for two diorites and 695.3 ± 3.4 Ma for one gabbronorite). These are partial melts of the mantle and related fractionates (εNd₆₉₀ = +4.2 to +7.3, ⁸⁷Sr/⁸⁶Sr_i = 0.70246–0.70268, zircon δ¹⁸O ∼ +5‰). Trace element patterns indicate that Atud magmas formed above a subduction zone as part of a large and long-lived (c. 60 myr) convergent margin. Atud complex igneous rocks belong to a larger metagabbro–epidiorite–diorite complex that formed as a deep crustal mush into which new pulses of mafic magma were periodically emplaced, incorporated and evolved. The petrological evolution can be explained by fractional crystallization of mafic magma plus variable plagioclase accumulation in a mid- to lower crustal MASH zone. The Atud igneous complex shows that mantle partial melting and fractional crystallization and plagioclase accumulation were important for Cryogenian crust formation in this part of the Arabian–Nubian Shield

    Phytol: A review of biomedical activities

    Get PDF
    © 2018 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (Auguist 2018) in accordance with the publisher’s archiving policyPhytol (PYT) is a diterpene member of the long-chain unsaturated acyclic alcohols. PYT and some of its derivatives, including phytanic acid (PA), exert a wide range of biological effects. PYT is a valuable essential oil (EO) used as a fragrance and a potential candidate for a broad range of applications in the pharmaceutical and biotechnological industry. There is ample evidence that PA may play a crucial role in the development of pathophysiological states. Focusing on PYT and some of its most relevant derivatives, here we present a systematic review of reported biological activities, along with their underlying mechanism of action. Recent investigations with PYT demonstrated anxiolytic, metabolism-modulating, cytotoxic, antioxidant, autophagy- and apoptosis-inducing, antinociceptive, anti-inflammatory, immune-modulating, and antimicrobial effects. PPARs- and NF-κB-mediated activities are also discussed as mechanisms responsible for some of the bioactivities of PYT. The overall goal of this review is to discuss recent findings pertaining to PYT biological activities and its possible applications

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Pleural mesothelial cell transformation into myofibroblasts and haptotactic migration in response to TGF-β1 in vitro

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology characterized by the development of subpleural foci of myofibroblasts that contribute to the exuberant fibrosis noted in the pulmonary parenchyma. Pleural mesothelial cells (PMC) are metabolically dynamic cells that cover the lung and chest wall as a monolayer and are in intimate proximity to the underlying lung parenchyma. The precise role of PMC in the pathogenesis of pulmonary parenchymal fibrosis remains to be identified. Transforming growth factor (TGF)-β1, a cytokine known for its capacity to induce proliferative and transformative changes in lung cells, is found in significantly higher quantities in the lungs of patients with IPF. High levels of TGF-β1 in the subpleural milieu may play a key role in the transition of normal PMC to myofibroblasts. Here we demonstrate that PMC activated by TGF-β1 undergo epithelial-mesenchymal transition (EMT) and respond with haptotactic migration to a gradient of TGF-β1 and that the transition of PMC to myofibroblasts is dependent on smad-2 signaling. The EMT of PMC was marked by upregulation of α-smooth muscle actin (α-SMA), fibroblast specific protein-1 (FSP-1), and collagen type I expression. Cytokeratin-8 and E-cadherin expression decreased whereas vimentin remained unchanged over time in transforming PMC. Knockdown of smad-2 gene by silencing small interfering RNA significantly suppressed the transition of PMC to myofibroblasts and significantly inhibited the PMC haptotaxis. We conclude that PMC undergo EMT when exposed to TGF-β1, involving smad-2 signaling, and PMC may be a possible source of myofibroblasts in IPF

    Active adsorption performance of planetary ball milled Saudi Arabian bentonite clay for the removal of copper ions from aqueous solution

    No full text
    We report the role of local bentonite clay in the removal of Cu2+ ions from aqueous solution. The fine bentonite clay powder was analysed by XRD, FTIR, SEM and DLS analysis techniques. Further, the adsorption experiments were carried out by varying many factors such as weight and size of bentonite clay, residence time, pH of the solution, stirring rate, temperature, and flow rate. The optimum conditions for effective removal of Cu2+ ions was 1 g dose of bentonite and 63 μm size of bentonite, 50 minutes of residence time and 50 °C temperature at pH 3 with a flow rate of 1 L/min. The data fitted well the Freundlich model and a maximum adsorption capacity of 61.72 mg/g has been obtained. The value of Gibbs free energy changes (ΔG{\Delta}G^{\circ} ), enthalpy changes (ΔH{\Delta}H^{\circ} ) and entropy changes (Δ{\Delta} S°) were found to be 3819.86 J mol1K1-3819.86\ \text{J~mol}^{-1}\text{K}^{-1} , +15079.10 J mol1K1+15079.10\ \text{J mol}^{-1}\text{K}^{-1} and +58.60 J mol1K1+58.60\ \text{J mol}^{-1}\text{K}^{-1} , respectively

    Diminazene attenuates pulmonary hypertension and improves angiogenic progenitor cell functions in experimental models

    No full text
    Rationale : Studies have demonstrated that angiotensin-converting enzyme 2 (ACE2) plays a protective role against lung diseases, including pulmonary hypertension (PH). Recently, an antitrypanosomal drug, diminazene aceturate (DIZE), was shown to exert an off-target effect of enhancing the enzymatic activity of ACE2 in vitro. Objectives: To evaluate the pharmacological actions of DIZE in experimental models of PH. Methods: PH was induced in male Sprague Dawley rats by monocrotaline, hypoxia, or bleomycin challenge. Subsets of animals were simultaneously treated with DIZE. In a separate set of experiments, DIZE was administered after 3 weeks of PH induction to determine whether the drug could reverse PH. Measurements and Main Results: DIZE treatment significantly prevented the development of PH in all of the animal models studied. The protective effects were associated with an increase in the vasoprotective axis of the lung renin-angiotensin system, decreased inflammatory cytokines, improved pulmonary vasoreactivity, and enhanced cardiac function. These beneficial effects were abolished by C-16, an ACE2 inhibitor. Initiation of DIZE treatment after the induction of PH arrested disease progression. Endothelial dysfunction represents a hallmark of PH pathophysiology, and growing evidence suggests that bone marrow-derived angiogenic progenitor cells contribute to endothelial homeostasis. We observed that angiogenic progenitor cells derived from the bone marrow of monocrotaline-challenged rats were dysfunctional and were repaired by DIZE treatment. Likewise, angiogenic progenitor cells isolated from patients with PH exhibited diminished migratory capacity toward the key chemoattractant stromal-derived factor 1α, which was corrected by in vitro DIZE treatment. Conclusions: Our results identify a therapeutic potential of DIZE in PH therapy. Copyright © 2013 by the American Thoracic Society
    corecore