748 research outputs found

    Giant magnetoresistance in ultra-small Graphene based devices

    Get PDF
    By computing spin-polarized electronic transport across a finite zigzag graphene ribbon bridging two metallic graphene electrodes, we demonstrate, as a proof of principle, that devices featuring 100% magnetoresistance can be built entirely out of carbon. In the ground state a short zig-zag ribbon is an antiferromagnetic insulator which, when connecting two metallic electrodes, acts as a tunnel barrier that suppresses the conductance. Application of a magnetic field turns the ribbon ferromagnetic and conducting, increasing dramatically the current between electrodes. We predict large magnetoresistance in this system at liquid nitrogen temperature and 10 Tesla or at liquid helium temperature and 300 Gauss.Comment: 4 pages, 4 figure

    Hydrogenated Graphene Nanoribbons for Spintronics

    Get PDF
    We show how hydrogenation of graphene nanoribbons at small concentrations can open new venues towards carbon-based spintronics applications regardless of any especific edge termination or passivation of the nanoribbons. Density functional theory calculations show that an adsorbed H atom induces a spin density on the surrounding π\pi orbitals whose symmetry and degree of localization depends on the distance to the edges of the nanoribbon. As expected for graphene-based systems, these induced magnetic moments interact ferromagnetically or antiferromagnetically depending on the relative adsorption graphene sublattice, but the magnitude of the interactions are found to strongly vary with the position of the H atoms relative to the edges. We also calculate, with the help of the Hubbard model, the transport properties of hydrogenated armchair semiconducting graphene nanoribbons in the diluted regime and show how the exchange coupling between H atoms can be exploited in the design of novel magnetoresistive devices

    Coherent transport in graphene nanoconstrictions

    Get PDF
    We study the effect of a structural nanoconstriction on the coherent transport properties of otherwise ideal zig-zag-edged infinitely long graphene ribbons. The electronic structure is calculated with the standard one-orbital tight-binding model and the linear conductance is obtained using the Landauer formula. We find that, since the zero-bias current is carried in the bulk of the ribbon, this is very robust with respect to a variety of constriction geometries and edge defects. In contrast, the curve of zero-bias conductance versus gate voltage departs from the (2n+1)e2/h(2n+1) e^2/h staircase of the ideal case as soon as a single atom is removed from the sample. We also find that wedge-shaped constrictions can present non-conducting states fully localized in the constriction close to the Fermi energy. The interest of these localized states in regards the formation of quantum dots in graphene is discussed.Comment: 9 pages, 9 figure

    Estudio de soldabilidad de aleación de aluminio 5083 H116 con arco pulsado GMAW (GMAW-P)

    Get PDF
    This research was based on the analysis of the weldability of aluminum joints, Alloy GL AW 5083 H116, with filler AWS 5.10 ER 5183 by GMAW-P process to determine the conditions of the heat-affected zone in the base material, depending on the heat input for the GMAW-P process with different pulsed technologies available in Colombia. The variables considered within this study were: welding positions (horizontal, vertical up, and overhead), type of welded joints (butt and fillet), and parameters for welding equipment (voltage, current, speed, power supply, speed development), and protective gas used (Argon, 100%). Non-destructive and destructive testing techniques were used to characterize the discontinuities found and the criteria to accept or reject the AWS D1.2 code (STRUCTURAL WELDING CODE - ALUMINUM by the AMERICAN WELDING SOCIETY). As a result, the investigation yielded the conditions for the application of filler material (ER 5183) on base material (alloy AW5083 GL H116), supported by Welding Procedure Specifications Documents (WPS) and Procedure Qualification Record (PQR) to implement in aluminum welding at the COTECMAR shipyard.Esta investigación se basó en el análisis de la soldabilidad de las uniones de aluminio, Aleación GL AW 5083 H116, con relleno AWS 5.10 ER 5183 mediante proceso de soldadura por arco metálico con gas (GMAW-P) para determinar las condiciones de la zona afectada por calor en el material base, dependiendo de la entrada de calor para el proceso GMAW-P con diferentes tecnologías de impulsos disponibles en Colombia. Las variables consideradas dentro de este estudio fueron: posiciones de soldadura (horizontal, vertical hacia arriba y por encima), tipos de uniones de soldadura (a tope y filete) y parámetros para equipo de soldadura (voltaje, corriente, velocidad, suministro de potencia, velocidad de desarrollo) y gas de protección utilizado (Argón, 100%). Se utilizaron técnicas de pruebas destructivos y no destructivas para caracterizar las discontinuidades halladas y los criterios para aceptar o rechazar el código AWS D1.2 (CÓDIGO DE SOLDADURA ESTRUCTURAL - ALUMINIO de la SOCIEDAD AMÉRICANA DE SOLDADURA). Como resultado, la investigación arrojó las condiciones para la aplicación del material de relleno (ER 5183) sobre material base (aleación AW5083 GL H116), apoyado por los documentos de Especificaciones de Procedimientos de Soldadura (WPS, por el término en inglés) y Registro de Calificación del Procedimiento (PQR, por el término en inglés) para implementar en soldadura en aluminio en el astillero de COTECMAR

    Uniform current in graphene strip with zigzag edges

    Full text link
    Graphene exhibits zero-gap massless-Dirac fermion and zero density of states at E = 0. These particles form localized states called edge states on finite width strip with zigzag edges at E = 0. Naively thinking, one may expect that current is also concentrated at the edge, but Zarbo and Nikolic numerically obtained a result that the current density shows maximum at the center of the strip. We derive a rigorous relation for the current density, and clarify the reason why the current density of edge state has a maximum at the center.Comment: 5 pages, 3 figures; added references and corrected typos, to be published in J. Phys. Soc. Jpn. Vol.78 No.

    Development and evaluation of a multiplex test for the detection of atypical bacterial DNA in community-acquired pneumonia during childhood

    Get PDF
    AbstractAn incorrect or late diagnosis can lead to an increase in the morbidity and mortality caused by pneumonia, and the availability of a rapid and accurate microbiological test to verify the aetiology is imperative. This study evaluated a molecular test for the identification of the bacterial cause of atypical community-acquired pneumonia (ACAP). Fifty-four children with pneumonia were studied using bacteriological cultures, Mycoplasma pneumoniae, Coxiella burnetii, Chlamydophila pneumoniae and Legionella spp. serology, and Streptococcus pneumoniae and Legionella antigens. Simultaneously, the presence of bacterial and fungal DNA was tested for in respiratory secretion samples using the Vircell SL kit, including multiplex PCR and amplicon detection by means of line blots. There were 14 cases of ACAP caused by M. pneumoniae, with positive kit results for 13 of them, and two cases of Q-fever, with negative kit results for Coxiella burnetii. The test was negative in the remaining 38 cases (one staphylococcal pneumonia, 20 Streptococcus pneumoniae pneumonias, and 17 probable viral pneumonias). The sensitivity of the test for the detection of M. pneumoniae was 92.8% and the specificity was 100%. The Vircell SL kit allows detection of M. pneumoniae DNA in respiratory secretion samples from children with ACAP

    A comparison of techniques for robust gender recognition

    Full text link
    Reprinted, with permission, from [Rojas Bello, R.N., Lago Fernández, L.F., Martínez Muñoz, G., y Sánchez Montañés, M.A., A comparision of techniques for robust gender recognition, IEEE International Conference on Image Processing, ICIP 2011]. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the Universidad Autónoma de Madrid's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Proceedings of 2011 18th IEEE International Conference on Image Processing (ICIP), 11-14 Sept. 2011, BrusselsAutomatic gender classification of face images is an area of growing interest with multiple applications. Appropriate classifiers should be robust against variations such as illumination, scale and orientation that occur in real world applications. This can be achieved by normalizing the images in order to reduce those variations (alignment, re-scaling, histogram-equalization, etc.), or by extracting features from the original images which are invariant respect to those variations. In this work we perform a robust comparison of eight different classifiers across 100 random partitions of a set of frontal face images. Four of them are state-of-the-art methods in automatic gender classification that use image normalization (SVMs, Neural Networks, ADABOOST and PCA+LDA). The other four strategies use invariant features extracted by SIFT (BOW, Evidence Random Trees, NBNN and Voted Nearest-Neighbor). The best strategies are SVM using normalized images and NBNN, the latter having the advantage that no strong image pre-processing is needed.This work has been supported by CDTI (project INTEGRA) and DGUICAM/UAM (project CCG10-UAM/TIC-5864

    Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Get PDF
    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.The authors acknowledge the support of the Rutherford Foundation of New Zealand and the Cambridge Commonwealth, European and International Trusts, and the ERC Advanced Investigator Grant, Novox, ERC-2009-adG247276. DMR acknowledges Marie Curie Actions (FP7/2007-2013, Grant Agreement Nos. 219332 and 631111), and the Ramon y Cajal 2011 programme from the Spanish MICINN and the European Social Fund, and the Comissionat per a Universitats I Recerca (CUR) del DIUE de la Generalitat de Catalunya, Spain.This is the final published version of the article. It was originally published in APL Materials (Hoye RLZ, Muñoz-Rojas D, Nelson SF, Illiberi A, Poodt P, Roozeboom F, MacManus-Driscoll JL, APL Materials, 2015, 3, 040701, doi:10.1063/1.4916525). The final version is available at http://dx.doi.org/10.1063/1.491652

    Work exposures and development of cardiovascular diseases: A systematic review

    Get PDF
    Introduction: Cardiovascular diseases (CVDs) are the number one cause of death, and there is evidence that work exposures could be associated with their development. This study aimed to systematically review observational studies of adults exposed to job strain, effort–reward imbalance, long working hours, job insecurity, shift work, and occupational noise, and assess the association of those work exposures with CVDs. Methods: The Navigation Guide framework was applied. The population were adults of working age (18–65), and cohort and case–control studies were included. The work exposures were job strain, effort–reward imbalance, long working hours, job insecurity, shift work, and occupational noise. The outcomes were cerebrovascular diseases, ischaemic heart disease, and hypertensive diseases. The selection, data extraction, risk of bias assessment, and quality assessment were carried out by two reviewers independently and disagreements were solved by a third reviewer or by consensus. The synthesis of the results was done by applying the ‘vote counting based on direction’ method, and the results were summarized in an effect direction plot. The strength of the evidence for every risk factor and CVD was defined by consensus. Results: A total of 17 643 papers were initially identified in the literature search, but after applying the filters by title and abstract, and full text, 86 studies were finally included. From the included studies, sufficient evidence was found of the harmfulness of job strain for cerebrovascular disease and ischemic heart disease. Furthermore, there was sufficient evidence of the harmfulness of shift work for ischemic heart disease. Evidence of no relationship was found between long working hours and shift work with ischaemic heart disease and hypertensive disease, respectively. The other associations of work exposures and CVDs had limited or inadequate evidence of harmfulness. Conclusions: In this comprehensive review, there was sufficient evidence of a harmful relationship between job strain, shift work, and CVDs. For the other work exposures, more high-quality studies are needed. In order to improve current prevention strategies for CVDs, the findings of this review imply that job strain and shift work are work exposures that constitute additional risk factors that could be approached as targets for worksite interventions
    • …
    corecore