183 research outputs found

    Reference Tracts and Generative Models for Brain White Matter Tractography †

    Get PDF
    Background: Probabilistic neighborhood tractography aims to automatically segment brain white matter tracts from diffusion magnetic resonance imaging (dMRI) data in different individuals. It uses reference tracts as priors for the shape and length of the tract, and matching models that describe typical deviations from these. We evaluated new reference tracts and matching models derived from dMRI data acquired from 80 healthy volunteers, aged 25–64 years. Methods: The new reference tracts and models were tested in 50 healthy older people, aged 71.8 ± 0.4 years. The matching models were further assessed by sampling and visualizing synthetic tracts derived from them. Results: We found that data-generated reference tracts improved the success rate of automatic white matter tract segmentations. We observed an increased rate of visually acceptable tracts, and decreased variation in quantitative parameters when using this approach. Sampling from the matching models demonstrated their quality, independently of the testing data. Conclusions: We have improved the automatic segmentation of brain white matter tracts, and demonstrated that matching models can be successfully transferred to novel data. In many cases, this will bypass the need for training data and make the use of probabilistic neighborhood tractography in small testing datasets newly practicable

    TractoR: Magnetic Resonance Imaging and Tractography with R

    Get PDF
    Statistical techniques play a major role in contemporary methods for analyzing magnetic resonance imaging (MRI) data. In addition to the central role that classical statistical methods play in research using MRI, statistical modeling and machine learning techniques are key to many modern data analysis pipelines. Applications for these techniques cover a broad spectrum of research, including many preclinical and clinical studies, and in some cases these methods are working their way into widespread routine use.In this manuscript we describe a software tool called TractoR (for “Tractography with R”), a collection of packages for the R language and environment, along with additional infrastructure for straightforwardly performing common image processing tasks. TractoR provides general purpose functions for reading, writing and manipulating MR images, as well as more specific code for fitting signal models to diffusion MRI data and performing tractography, a technique for visualizing neural connectivity

    Longitudinal changes of white matter hyperintensities in sporadic small vessel disease: a systematic review and meta-analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: White matter hyperintensities (WMHs) are frequent imaging features of small vessel disease (SVD) and related to poor clinical outcomes. WMH progression over time is well described, but regression was also noted recently, although the frequency and associated factors are unknown. This systematic review and meta-analysis aims to assess longitudinal intraindividual WMH volume changes in sporadic SVD. METHODS: We searched EMBASE and MEDLINE for articles up to 28 January 2022 on WMH volume changes using MRI on ≄2 time points in adults with sporadic SVD. We classified populations (healthy/community-dwelling, stroke, cognitive, other vascular risk factors, and depression) based on study characteristics. We performed random-effects meta-analyses with Knapp-Hartung adjustment to determine mean WMH volume change (change in milliliters, percentage of intracranial volume [%ICV], or milliliters per year), 95% CI, and prediction intervals (PIs, limits of increase and decrease) using unadjusted data. Risk of bias assessment tool for nonrandomized studies was used to assess risk of bias. We followed Preferred Reporting in Systematic Review and Meta-Analysis guidelines. RESULTS: Forty-one articles, 12,284 participants, met the inclusion criteria. Thirteen articles had low risk of bias across all domains. Mean WMH volume increased over time by 1.74 mL (95% CI 1.23–2.26; PI −1.24 to 4.73 mL; 27 articles, N = 7,411, mean time interval 2.7 years, SD = 1.65); 0.25 %ICV (95% CI 0.14–0.36; PI −0.06 to 0.56; 6 articles, N = 1,071, mean time interval 3.5 years, SD = 1.54); or 0.58 mL/y (95% CI 0.35–0.81; PI −0.26 to 1.41; 8 articles, N = 3,802). In addition, 13 articles specifically mentioned and/or provided data on WMH regression, which occurred in asymptomatic, stroke, and cognitive disorders related to SVD. DISCUSSION: Net mean WMH volume increases over time mask wide-ranging change (e.g., mean increase of 1.75 mL ranging from 1.25 mL decrease to 4.75 mL increase), with regression documented explicitly in up to one-third of participants. More knowledge on underlying mechanisms, associated factors, and clinical correlates is needed, as WMH regression could be an important intervention target

    Influence of thickening of the inner skull table on intracranial volume measurement in older people

    Get PDF
    INTRODUCTION: It is generally assumed that intracranial volume (ICV) remains constant after peaking in early adulthood. Thus ICV is used as a ‘proxy’ for original brain size when trying to estimate brain atrophy in older people in neuroimaging studies. However, physiological changes in the skull, such as thickening of the frontal inner table, are relatively common in older age and will reduce ICV. The potential influence that inner table skull thickening may have on ICV measurement in old age has yet to be investigated. METHODS: We selected 60 (31 males, 29 females) representative older adults aged 71.1–74.3 years from a community-dwelling ageing cohort, the Lothian Birth Cohort 1936. A semi-automatically derived current ICV measurement obtained from high resolution T1-weighted volume scans was compared to the estimated original ICV by excluding inner skull table thickening using expert manual image processing. RESULTS: Inner table skull thickening reduced ICV from an estimated original 1480.0 ml to a current 1409.1 ml, a median decrease of 7.3% (Z = − 6.334; p < 0.001), and this reduction was more prominent in women than men (median decrease 114.6 vs. 101.9 ml respectively). This led to potential significant underestimations of brain atrophy in this sample by 5.3% (p < 0.001) and obscured potential gender differences. CONCLUSIONS: The effects of skull thickening are important to consider when conducting research in ageing, as they can obscure gender differences and result in underestimation of brain atrophy. Research into reliable methods of determining the estimated original ICV is required for research into brain ageing

    Metric to quantify white matter damage on brain magnetic resonance images

    Get PDF
    PURPOSE: Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. METHODS: We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. RESULTS: The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p  =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. CONCLUSION: The new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white matter damage

    A protocol for precise comparisons of small vessel disease lesions between ex vivo magnetic resonance imaging and histopathology

    Get PDF
    pp. 310-32La neuroimagen y los estudios clínicos han definido la enfermedad cerebral de los vasos pequeños humanos, pero la fisiopatología sigue siendo relativamente poco comprendida. Para desarrollar terapias eficaces y estrategias preventivas, debemos comprender mejor la heterogeneidad y el desarrollo de la enfermedad de los vasos pequeños a nivel celular.S

    Application of the Ordered Logit Model to Optimising Frangi Filter Parameters for Segmentation of Perivascular Spaces

    Get PDF
    La segmentaciĂłn de los espacios perivasculares (EVP) de las imĂĄgenes de resonancia magnĂ©tica (RM) del cerebro es importante para comprender el sistema linfĂĄtico del cerebro y su relaciĂłn con las enfermedades neurolĂłgicas. El filtro Frangi podrĂ­a ser una herramienta valiosa para este propĂłsito. Sin embargo, sus parĂĄmetros deben ajustarse en respuesta a la variabilidad en los parĂĄmetros del escĂĄner y los protocolos de estudio. Conociendo las clasificaciones neurorradiolĂłgicas del PVS, utilizamos el modelo logit ordenado para optimizar los parĂĄmetros del filtro Frangi. El volumen de PVS obtenido se correlacionĂł de manera significativa y fuerte con las evaluaciones neurorradiolĂłgicas (ρ = 0.75, p <0.001 de Spearman), lo que sugiere que el modelo logit ordenado podrĂ­a ser una buena alternativa a los marcos de optimizaciĂłn convencionales para segmentar PVS en MRI

    Fluctuating asymmetry in brain structure and general intelligence in 73-Year-olds

    Get PDF
    SRC, MEB, JMW, IJD were supported by MRC grants MR/M013111/1 and MR/R024065/1. IJD is additionally supported by the Dementias Platform UK (MR/L015382/1), and he, SRC and SJR by the Age UK-funded Disconnected Mind project (http://www.disconnectedmind.ed.ac.uk). The work was done within the University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology; it was funded by the MRC and the BBSRC (MR/K026992/1) and supported SJR, IJD, and JMS. SRC, SJR, MEB and IJD were supported by a National Institutes of Health (NIH) research grant R01AG054628. JMW was supported by the Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) collaboration (http://www.sinapse.ac.uk).Fluctuating body asymmetry is theorized to indicate developmental instability, and to have small positive associations with low socioeconomic status (SES). Previous studies have reported small negative associations between fluctuating body asymmetry and cognitive functioning, but relationships between fluctuating brain asymmetry and cognitive functioning remain unclear. The present study investigated the association between general intelligence (a latent factor derived from a factor analysis on 13 cognitive tests) and the fluctuating asymmetry of four structural measures of brain hemispheric asymmetry: cortical surface area, cortical volume, cortical thickness, and white matter fractional anisotropy. The sample comprised members of the Lothian Birth Cohort 1936 (LBC1936, N = 636, mean age = 72.9 years). Two methods were used to calculate structural hemispheric asymmetry: in the first method, regions contributed equally to the overall asymmetry score; in the second method, regions contributed proportionally to their size. When regions contributed equally, cortical thickness asymmetry was negatively associated with general intelligence (beta=-0.18,p <.001). There was no association between cortical thickness asymmetry and childhood SES, suggesting that other mechanisms are involved in the thickness asymmetry-intelligence association. Across all cortical metrics, asymmetry of regions identified by the parieto-frontal integration theory (P-FIT) was not more strongly associated with general intelligence than non-P-FIT asymmetry. When regions contributed proportionally, there were no associations between general intelligence and any of the asymmetry measures. The implications of these findings, and of different methods of calculating structural hemispheric asymmetry, are discussed.Publisher PDFPeer reviewe
    • 

    corecore