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A B S T R A C T

Fluctuating body asymmetry is theorized to indicate developmental instability, and to have small positive as-
sociations with low socioeconomic status (SES). Previous studies have reported small negative associations
between fluctuating body asymmetry and cognitive functioning, but relationships between fluctuating brain
asymmetry and cognitive functioning remain unclear. The present study investigated the association between
general intelligence (a latent factor derived from a factor analysis on 13 cognitive tests) and the fluctuating
asymmetry of four structural measures of brain hemispheric asymmetry: cortical surface area, cortical volume,
cortical thickness, and white matter fractional anisotropy. The sample comprised members of the Lothian Birth
Cohort 1936 (LBC1936, N=636, mean age= 72.9 years). Two methods were used to calculate structural
hemispheric asymmetry: in the first method, regions contributed equally to the overall asymmetry score; in the
second method, regions contributed proportionally to their size. When regions contributed equally, cortical
thickness asymmetry was negatively associated with general intelligence (β=−0.18,p < .001). There was no
association between cortical thickness asymmetry and childhood SES, suggesting that other mechanisms are
involved in the thickness asymmetry-intelligence association. Across all cortical metrics, asymmetry of regions
identified by the parieto-frontal integration theory (P-FIT) was not more strongly associated with general in-
telligence than non-P-FIT asymmetry. When regions contributed proportionally, there were no associations
between general intelligence and any of the asymmetry measures. The implications of these findings, and of
different methods of calculating structural hemispheric asymmetry, are discussed.

1. Introduction

Higher general intelligence is associated with educational and oc-
cupational successes (Schmidt & Hunter, 1998; Strenze, 2007). Since
performance is positively correlated across multiple cognitive tasks, a
measure of general intelligence can be estimated using factor analysis
(Carrol, 1993; Spearman, 1904). Investigating correlates of general
intelligence could provide a better understanding of individual differ-
ences in mental ability, and aid identification of people with specific
environmental circumstances and disorders that might put them at risk

of lower general intelligence. Factors that affect general intelligence
have substantial effects during early life (Petrill et al., 2004). For ex-
ample, shorter gestational time and lower parental socioeconomic
status (SES) are reliably associated with lower general intelligence in
childhood and adulthood (Davis et al., 2011; Eide, Oyen, Skjaerven, &
Bjerkedal, 2007; Hackman & Farah, 2009; Larson, Russ, Nelson, Olson,
& Halfon, 2015).

Fluctuating body asymmetry is a measure of developmental in-
stability across species (van Dongen, 2006). As two sides of a bilateral
feature (for example the hands or face) represent independent
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replicates of the same developmental events, random deviations from
perfect symmetry in bilateral features indicate minor developmental
errors (Hoyme, 1993). Fluctuating asymmetry is thought to be driven
by both genetic and non-genetic factors (Leamy & Klingenberg, 2005;
Özener, 2010). Fluctuating body asymmetry appears to decrease in
early childhood (Hope, Bates, Dykiert, Der, & Deary, 2013) and be
negatively associated with childhood SES in older adults (Hope et al.,
2013). It is also negatively associated with cognitive performance. For
example, children who have more asymmetrical features have slower
reaction times (Hope, Bates, Dykiert, Der, & Deary, 2015), and there is
an association between neurodevelopmental disorders, such as autistic
spectrum disorder and intellectual disabilities, and increased fluctu-
ating body asymmetry (Naugler & Ludman, 1996; Yeo & Gangestad,
2015). Correlation sizes between combined body asymmetry measures
(e.g. asymmetries in the widths of wrists, ankles, or elbows, or lengths
of fingers) and cognitive performance tend to be small to modest (e.g.
Furlow, Armijo-Prewitt, Gangestad, & Thornhill, 1997, N=112,
r=−0.21; Bates, 2007, N=164, r=−0.29). A study with 263 par-
ticipants found no correlation between fluctuating body asymmetry and
cognitive performance (r=0.01; Johnson, Segal, & Bouchard Jr, 2008).
However, the age range of was wide (18–79 years-old); relationships
between fluctuating asymmetry and general intelligence might be
harder to detect amidst the life-long accumulation of structural influ-
ences that are not relevant for cognitive outcomes.

Brain asymmetries are not straightforward to interpret, since some
functions are specialised in each of the two hemispheres, resulting in
some hemispheric asymmetries being positively associated with specific
cognitive abilities. For example, Plessen, Hugdahl, Bansal, Hao, and
Peterson (2014) report that right> left asymmetry in posterior brain
regions is positively associated with visuospatial abilities. Other direc-
tional brain asymmetries have negative associations with specific cog-
nitive abilities. For example, greater rightward asymmetry of the fusi-
form gyrus is associated with increased severity of social cognition
deficits in autistic spectrum disorder (N=128, Dougherty, Evans,
Katuwal, & Michael, 2016). There is also evidence to suggest that
fluctuating (that is, non-directional) brain asymmetry is associated with
cognitive performance. Neurodevelopmental disorders such as autistic
spectrum disorder, attention deficit disorder, dyslexia and early ag-
gressive behavioural problems are associated with increased fluctuating
brain asymmetry (Yeo & Gangestad, 1998). Moreover, Yeo, Ryman,
Pommy, Thoma, and Jung (2016), N=244) reported a small negative
association (r=−0.15) between cortical surface area asymmetry and
general intelligence (a latent factor derived from a factor analysis on
seven cognitive tests) in young adults.

The parieto-frontal integration theory of intelligence (P-FIT; Jung &
Haier, 2007) proposes that cognitive processes rely most heavily on
frontoparietal brain regions. In Yeo et al.'s (2016) study, when fronto-
parietal and non-frontoparietal regions were separated, the association
between surface area asymmetry and general intelligence was only
found for frontoparietal regions. The authors interpreted this result as
being consistent with the P-FIT. However, their study is not decisive,
because they did not report whether the association was significantly
larger in frontoparietal than non-frontoparietal regions.

The current study aimed to replicate Yeo et al.'s (2016) method with
a sample of older adults, while also adding additional brain parameters
and providing a methodological alternative for brain asymmetry cal-
culation. Whereas Yeo et al. (2016) focused on the association between
brain surface area asymmetry and general intelligence, the current
study focused on three measures of brain cortical asymmetry: surface
area, volume and thickness. For any associations between brain asym-
metry and general intelligence, the role of childhood SES was in-
vestigated. Another aim of the current study was to investigate whether
cortical fluctuating asymmetry in P-FIT brain regions is more strongly
associated with general intelligence than cortical fluctuating asym-
metry in non-P-FIT brain regions. Furthermore, the current study
compared two methods of calculating cortical fluctuating asymmetry:

in the first method, individual regions contribute equally to the overall
asymmetry score (used by Yeo et al., 2016); in the second method, the
calculation of asymmetry is proportional to the size of the region.

Measurements of brain asymmetry are not limited to grey matter.
Some studies have reported associations between specific white matter
tract fractional anisotropy directional asymmetries and specific cogni-
tive abilities. For example, Lebel and Beaulieu (2009; N=183) found a
significant correlation between leftward lateralization of fractional
anisotropy of the arcuate fasciculus and scores on the Peabody Picture
Vocabulary Test (PPVT-III; r=0.32; Dunn, 1997). There is a small
association between global white matter fractional anisotropy and
general intelligence (Penke et al., 2012). However, the association be-
tween fluctuating asymmetry in global white matter fractional aniso-
tropy and general intelligence has not been tested before. Therefore, a
further aim of the present study was to investigate the relationship
between the fluctuating asymmetry of white matter fractional aniso-
tropy across multiple tracts and general intelligence.

2. Method

2.1. Participants

Participants were members of the Lothian Birth Cohort 1936
(LBC1936, see Deary et al., 2007; Deary, Gow, Pattie, & Starr, 2012;
Taylor, Pattie, & Deary, 2018). The current study uses Wave 2 of data
collection (collected between 2007 and 2011, Age M=72.9 years,
SD=0.71), which was the first wave at which brain MRI scans were
collected. Of those participants who completed cognitive testing at re-
cruitment (Wave 1; N=1091), 731 participants agreed to brain scan-
ning at Wave 2. All participants were scanned in the same scanner in
the same clinic.

After image processing, MRI data from 636 participants (336 males,
300 females, Age: M=72.7 years, SD=0.73) were available, and are
the subject of this report. Depending on cognitive test, data from
N=624–636 was available (see Table 1). For the white matter frac-
tional anisotropy analysis, after diffusion MRI processing, data from
556 to 664 participants were available depending on the tract of in-
terest (see Supplementary Table 1).

An additional analysis was also run that excluded participants who
had strokes or visible abnormalities in MRI images (e.g. cists); for this,
the N=530. The result of this analysis was very similar to that of the
full analysis, and is presented in Supplementary Table 2.

Ethical permission for the LBC1936 study was obtained from the
Multi-Centre Research Ethics Committee for Scotland (MREC/01/0/
56), the Lothian Research Ethics Committee (LREC/2003/2/29) and the
Scotland A Research Ethics Committee (07/MRE00/58). All partici-
pants gave written consent before cognitive and MRI measurements
were collected.

Table 1
Descriptive statistics for cognitive tests (all completed at age 73).

Cognitive domain Test N M (SD)

Visuospatial skills Matrix Reasoning 634 13.52 (4.93)
Block Design 634 34.38 (10.01)
Spatial Span 634 14.79 (2.72)

Crystallised ability NART 634 34.66 (8.10)
WTAR 634 41.27 (6.94)
Phonemic Verbal Fluency 635 43.55 (12.78)

Verbal memory Verbal Paired Associates 623 27.57 (9.48)
Logical Memory 635 75.03 (17.84)
Digit span backwards 636 7.88 (2.31)

Processing speed Symbol Search 634 24.88 (6.05)
Digit-Symbol Substitution 634 56.68 (11.79)
Inspection Time 624 111.78 (10.95)
Four-Choice Reaction Time (s) 635 0.64 (0.08)
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2.2. Measures

2.2.1. Cognitive tests
The participants completed a wide-ranging selection of cognitive

tests, of which 13 were selected for use in the current study. All tests
were individually administered and all participants were tested in the
same location, using the same equipment and instructions. Based on
previous analyses of this battery of cognitive tests (e.g. Ritchie et al.,
2016), these tests were grouped into four cognitive domains, modelled
in a confirmatory factor analysis-based hierarchical model with a
second-order general factor (general intelligence): Visuospatial Skills,
Crystallised Ability, Verbal Memory and Processing Speed.

Visuospatial Skills consisted of two subtests from the Wechsler Adult
Intelligence Scale-III (WAIS-III; Wechsler, 1997a): Matrix Reasoning
and Block Design. It also included the Spatial Span (average of forward
and backward) subtest from the Wechsler Memory Scale-III (WMS-III;
Wechsler, 1997b).

Crystallised Ability was measured by two tests involving the parti-
cipant reading a list of irregular words out loud: the National Adult
Reading Test (NART; Nelson & Wilson, 1991) and the Wechsler Test of
Adult Reading (WTAR; Wechsler, 2001). A test of Phonemic Verbal
Fluency (Lezak, Howieson, Loring, Hannay, & Fischer, 2004) was also
included.

Verbal Memory was measured using two subtests from the WMS-III:
Verbal Paired Associates (total from immediate and delayed tests) and
Logical Memory (total from immediate and delayed tests). It also in-
cluded the Digit Span Backwards subtest from the WAIS-III.

Processing Speed was measured by two pencil and paper tests from
the WAIS-III: Symbol Search and Digit-Symbol Substitution.
Furthermore, two computerised instruments were used: Inspection
Time (Deary et al., 2004); and Four-Choice Reaction Time (Deary, Der,
& Ford, 2001).

2.2.2. Childhood SES measures
The childhood SES data were collected when participants were re-

cruited as members of the LBC1936, at a mean age of 70 years. The four
measures relate to when participants were about 11 years old. These
measures are: number of people per room in their house; type of toilet
(indoor or outdoor) which is indicative of the size and quality of a
house in the 1930s (indoor toilet was scored as higher SES; Dedman,
Gunnell, Davey Smith, & Frankel, 2001); number of people sharing a
toilet; and father's social class. Father's social class was measured using
the UK's 1951 Classification of Occupations (General Register Office,
1956; Knight, 1967). This was compiled for use in connection with the
1951 Census of England, Wales and Scotland and generally coincided
with the middle of the father's career. It is reported on a 5-point scale
ranging from 1=professional to 5= unskilled.

2.2.3. MRI protocol
For full details of the MRI protocol, see Wardlaw et al. (2011). In

brief, MRI data was collected in the Brain Research Imaging Centre,
University of Edinburgh, using a GE Signa LX 1.5T clinical scanner
(General Electric, Milwaukee, WI). Image acquisition comprised whole
brain T2-weighted, T2*-weighted and FLAIR-weighted axial scans, and
a high-resolution T1-weighted volume sequence in the coronal plane.
Single-shot, spin-echo, echo-planar, and diffusion-weighted volumes
(b= 1000 s/mm2) were acquired in 64 non-collinear directions along
with seven T2-weighted volumes (b= 0 s/mm2). Seventy-two adjacent
2mm thick axial slices acquired with a field of view of 256× 256mm
and a matrix size of 128×128, giving a resolution of 2× 2×2mm3.
Repetition and echo times were 16.5 s and 95.5 milliseconds, respec-
tively. Total image acquisition took approximately 70min.

Methods for cortical reconstruction and volumetric segmentation
were performed with the FreeSurfer image analysis suite (http://surfer.
nmr.mgh.harvard.edu/). This FreeSurfer parcellation yields 34 paired
measures across the two hemispheres based on the Desikan-Killiany

atlas (Desikan et al., 2006). It was used to acquire a left and right
measure for 34 regions for surface area, volume and thickness (for
descriptive statistics, see Supplementary Table 3). The resultant par-
cellations were then visually inspected and manual editing rectified
issues with skull stripping, tissue identification or ROI boundary iden-
tification. Thirty-two participants were excluded at this stage due to
infarct, poor quality scan, general brain tissue identification failure, or
major parcellation failure.

2.3. Tractography protocol

In the current study, bilateral anterior thalamic radiations, cin-
gulum bundles, and arcuate, uncinate, and inferior longitudinal fasci-
culi were used (Fig. 1); the splenium and genu of the corpus callosum
were also identified from this protocol but were not used in the current
analysis as they are not separable for left and right hemispheres.

For full details of the tractography protocol, see Clayden et al.
(2011) and Bastin et al. (2010). In brief, data were pre-processed to
extract the brain, remove bulk participant motion and eddy current-
induced distortions, and estimate water diffusion tensor parameters
using FLS tools (FMRIB, Oxford UK; Smith et al., 2004). Brain con-
nectivity data were created using the BedpostX/ProbTrackX tracto-
graphy algorithm (Behrens, Berg, Jbabdi, Rushworth, & Woolrich,
2007) with its default parameters of a 2-fiber model and 5000
streamlines to reconstruct tracts of interest. For each participant, the
seed point producing the best match tract to a reference for each of the
10 pathways was determined using probabilistic neighbourhood trac-
tography, implemented in the TractoR package (Clayden et al., 2011),
with the resulting tractography mask applied to each participant's mean
diffusivity and fractional anisotropy volumes. Tract-averaged values
(weighted by the connection probability) were calculated from these
masks and used in all subsequent analyses. The image analysts were
blind to the characteristics of each participant.

2.4. Statistical analysis

All analyses were conducted in R (version 3.2.5; R Core Team,
2016). The lavaan package (Rosseel, 2012) was used to estimate
structural equation models. The following fit indices were considered:
chi-squared (χ2), Comparative Fit Index (CFI), Tucker Lewis Index
(TLI), Root Mean Square Error of Approximation (RMSEA) and Root
Mean Square Residual (SRMR). Hu and Bentler's (1999) criteria for
acceptable model fit were as follows: CFI > 0.95, TLI > 0.95,

Fig. 1. White matter tracts, segmented using probabilistic neighbourhood
tractography overlaid on fractional anisotropy maps for a representative par-
ticipant. Tracts are shown in orange and seed points are indicated by a green
cross. Top (left to right): arcuate, anterior thalamic radiations, bilateral cin-
gulum cingulate gyri. Bottom (left to right): uncinate, inferior longitudinal
fasciculi (adapted from Ritchie et al., 2015). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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RMSEA < 0.06, SRMR < 0.08. Using these criteria, all models were
estimated using full information maximum likelihood. We also tested
the main associations of interest using a Bayesian analysis. To do so, we
extracted the factor scores for general intelligence from the structural
equation model and ran a Bayesian correlation to link them with each
brain asymmetry variable. We did so using the BayesFactor package for
R (Morey & Rouder, 2018). In this way, we were able to calculate the
strength of the evidence for and against the null hypothesis (the latter
being that there was no association between the brain asymmetry
variable in question and general intelligence).

2.5. Calculation of asymmetry

Two methods were used for calculating fluctuating asymmetry. The
first was that described by Yeo et al. (2016, p. 95). This method aimed
to calculate fluctuating asymmetry for each of the four measures: cor-
tical surface area, cortical volume, cortical thickness and white matter
fractional anisotropy parameters with each region/tract contributing
equally to the overall asymmetry score. Yeo et al. (2016) explain that
this modelled measure of equal contribution is typical for aggregate
measures based on body features (e.g. Bates, 2007; Furlow et al., 1997).
The procedure involved the following steps:

1. For each participant, directional asymmetries were calculated for
each region/tract (the right value was subtracted from the left; see
Supplementary Fig. 1);

2. The mean directional asymmetry for each region/tract was found
across the whole sample;

3. The values in Step 2 were subtracted from the values in Step 1,
providing a measure of deviance from the sample mean for each
region/tract for each participant;

4. The absolute values of the values in Step 3 were taken, providing a
non-directional measure of asymmetry;

5. These values were divided by the average of each participant's left
and right hemisphere values for the relevant region/tract, ensuring
that each region/tract contributed equally to the overall asymmetry
score.

• This method treats each parcellation of the brain as an equal unit of
interest.
• This step was used by Yeo et al. (2016) since regions vary in size
(e.g. in this sample, the total surface area of the superior frontal
region is 12,730.15mm2 whereas the total surface area of the en-
torhinal region is 722.90mm2). Absolute asymmetry scores for each
cortical region are given in Supplementary Table 4.

6. The values for all regions/tracts were averaged for each participant,
providing an overall asymmetry score for each participant;

7. In separate analyses, testing the P-FIT theory (Jung & Haier, 2007),
separate asymmetry scores (using the procedure above) were found
for each participant for P-FIT and non-P-FIT regions (see Supple-
mentary Figs. 2 and 3).

• P-FIT regions: caudal middle frontal, frontal pole, fusiform, inferior
parietal, lateral orbitofrontal, medial orbitofrontal, rostral middle
frontal, superior frontal, superior parietal and supramarginal.
• Non-P-FIT regions: bank superior temporal sulcus, caudal anterior
cingulate, cuneus, entorhinal, inferior temporal, insula, isthmus
cingulate, lateral occipital, lingual, middle temporal, para-
hippocampal, paracentral, pars opercularis, pars orbitalis, pars tri-
angularis, pericalcarine, postcentral, posterior cingulate, precentral,
precuneus, rostral anterior cingulate, superior temporal, temporal
pole and transverse temporal.

Although it might be valid for body-part asymmetry scores to make
equal contributions to overall asymmetry scores, the same might not be

the case for the brain. It might not be appropriate to allow, for example,
the entorhinal cortex (722.90mm2) to contribute as much to the overall
asymmetry measure as the much larger superior frontal region
(12,730.15mm2). Allowing an equal contribution of regions could re-
sult in a substantially larger asymmetry score than is representative of
the entire cortex. It is possible that proportional asymmetry provides a
more representative index of hemispheric asymmetry. Thus, our second
method for calculating fluctuating asymmetry scores involved each
region contributing proportionally to the asymmetry score, depending
on their size. For this method, for each measure (cortical surface area,
volume and thickness), the total right hemisphere value was subtracted
from the left.

3. Results

All models reported in this section had acceptable fit, according to
the criteria in the Methods section (see Supplementary Table 5).

3.1. Cognitive descriptive statistics

Descriptive statistics for all 13 cognitive tests are presented in
Table 1 for the 636 participants who completed cognitive tests and MRI
scanning.

Tests for measurement invariance were performed (see Widaman,
Ferrer, & Conger, 2010). For general intelligence, strong measurement
invariance for males and females could not be assumed (p < .001 for
the difference between the model with strong invariance and one with
only configural invariance). Therefore, the latent factor of general in-
telligence could not be treated the same across the sexes (see Supple-
mentary Tables 6 and 7). Consequently, sex differences were not in-
vestigated in the models that included the latent factor of general
intelligence.

3.2. Model of general intelligence

A hierarchical confirmatory factor analysis model was estimated for
general intelligence (see Supplementary Fig. 4). Each test loaded highly
on the relevant domain, and all domains had high loadings on general
intelligence (see Fig. 3). In this model, the residual variance of the path
from general intelligence to Verbal Memory was near-zero and was
estimated as negative (β=−1.41), indicating that all variance in
Verbal Memory was shared with general intelligence. To allow the
model to converge on within-bounds estimates, the variance of Verbal
Memory was fixed at zero. Covariance paths were added between NART
and WTAR and between Verbal Paired Associates and Logical Memory,
as these tests are similar and share method variance not incorporated
by the rest of the model. All paths were statistically significant at the
p < .001 level (see Supplementary Table 8).

3.3. Regional cortical asymmetry and associations with intelligence

Descriptive statistics for the left and right hemisphere surface area,
volume, and thickness are presented in Supplementary Table 3. First,
simple directional asymmetries (left minus right) were computed for
each cortical region for each participant (see Supplementary Fig. 1). To
evaluate the extent and significance of these directional asymmetries,
one-sample t-tests were conducted, comparing each asymmetry value to
zero. Then, the absolute asymmetries of the 34 cortical regions were
calculated (see Fig. 2 and Supplementary Table 4).

β-weights of paths from the absolute asymmetry of the 34 cortical
regions to general intelligence are presented in Supplementary Table 9.
To summarise, for surface area asymmetry, the precuneus (β=0.13,
p= .007), rostral anterior cingulate (β=0.13, p= .004) and trans-
verse temporal (β=0.09, p= .047) regions were positively associated
with general intelligence. For cortical volume, asymmetry in the in-
ferior temporal region was positively associated with general
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intelligence (β=0.10, p= .034). For thickness asymmetry, there were
no significant associations between any of the 34 cortical regions and
general intelligence.

3.3.1. Equal regional contribution analysis: general intelligence model
An equal regional contribution analysis was conducted, as in Yeo

et al. (2016). Collapsing across the 34 cortical regions, values of overall
asymmetry were calculated for surface area, volume and thickness.
Surface area asymmetry was strongly correlated with volume asym-
metry (r=0.72, p < .001), and volume asymmetry was modestly
correlated with thickness asymmetry (r=0.28, p < .001). But, as was
also found by Koelkebeck et al. (2014), there was no significant cor-
relation between surface area asymmetry and thickness asymmetry
(r=0.04, p= .377).

A structural equation model was estimated to test the association
between global cortical asymmetry and general intelligence (see Fig. 3).
The three cortical asymmetry measures (surface area, volume and
thickness) were free to correlate with each other. This model revealed a
small negative association between cortical thickness asymmetry and
general intelligence (β=−0.18, SE=0.05, p < .001). There was no
association between surface area asymmetry and general intelligence
(β=−0.03, SE=0.07, p= .678), or between volume asymmetry and
general intelligence (β=0.07, SE=0.07, p= .286). The Bayes Factor
correlations confirmed that there was strong evidence in favour of the
association for thickness (BF= 1130.58; the data were over a thousand
times more likely to be observed in the case of a correlation rather than
the null hypothesis of no correlation). There was compelling evidence
in favour of the null hypothesis for volume (BF=0.10; the null hy-
pothesis of no correlation was 10.27 times more likely than the alter-
native) and for surface area (BF= 0.11; the null hypothesis was 8.85
times more likely than the alternative).

Differences in effect sizes were analysed to investigate whether the
association between thickness asymmetry and general intelligence was
significantly different from the association between surface area
asymmetry and/or volume asymmetry and general intelligence. As
shown in Table 2, there were significant differences between the ori-
ginal, no constraints model (Model i) and models where equality con-
straints were placed on surface area asymmetry and thickness asym-
metry (Model ii, p= .003) and volume asymmetry and thickness
asymmetry (Model iii, p= .002). The no-constraint model had better
model fit than the constrained models (e.g. AIC: Model i=32,939,
Model ii= 32,946, Model iii= 32,947). Therefore, the effect size of the
association between thickness asymmetry and general intelligence was
significantly different to the associations between surface area asym-
metry and general intelligence, and volume asymmetry and general
intelligence. Thus, in this sample, global thickness asymmetry was
significantly more strongly related to general intelligence than was

global surface area asymmetry or global volume asymmetry.

3.3.2. Equal regional contribution analysis: Childhood SES mediation
model

As global cortical thickness asymmetry was significantly negatively
related to general intelligence, a new model was estimated to test
whether thickness asymmetry mediated the association between
childhood SES and general intelligence (see Fig. 4 and Supplementary
Table 10). Father's occupational class, type of toilet and number of
people sharing a toilet loaded significantly (p < .001) on the latent
factor of childhood SES. The residual variance of the path from the
number of people per room to childhood SES was estimated as negative
(β=−0.153), indicating all variance was shared with childhood SES.
Therefore, as discussed above, its residual variance was set to zero. A
covariance path was added between type of toilet and number of people
sharing a toilet, since these variables shared significant covariance not
accounted for by the paths in the rest of the model.

The bivariate association between SES and general intelligence was
β=−0.29, p < .001. Whereas cortical thickness asymmetry was sig-
nificantly associated with general intelligence (β=−0.18), it was non-
significantly associated with childhood SES (β=−0.06, p= .154). The
mediation model indicated that the SES-general intelligence association
was not significantly mediated by cortical thickness asymmetry (at-
tenuation 3.81%, p= .205, from β=−0.30 to β=−0.29).

3.3.3. Equal regional contribution analysis: P-FIT versus non-Non-P-FIT
asymmetry

Another aim of the present study was to investigate whether P-FIT
asymmetry is more strongly related to general intelligence than non-P-
FIT asymmetry, as was reported by Yeo et al. (2016). Separate values
were calculated for P-FIT and non-P-FIT asymmetry. P-FIT and non-P-
FIT asymmetry was moderately positively correlated on all three mea-
sures: surface area asymmetry r=0.29, p < .001; volume asymmetry
r=0.24, p < .001; thickness asymmetry r=0.29, p < .001. A new
general intelligence model was estimated to include separate surface
area asymmetry, volume asymmetry, and thickness asymmetry scores
for P-FIT and non-P-FIT regions (see Table 3).

Importantly, we next tested formally whether P-FIT asymmetry was
more strongly related to general intelligence than non-P-FIT asymmetry
for cortical surface area, volume or thickness. To do this, equality
constraints were placed on the P-FIT and non-P-FIT asymmetry scores
for each measure in turn. For example, in Model B equality constraints
were placed on P-FIT surface area asymmetry and non-P-FIT surface
area asymmetry. These constrained models were compared to the ori-
ginal, freely-estimated, model (Model A). For each comparison, the
critical p-value was>0.05 (see Table 4). Therefore, P-FIT asymmetry
was not more strongly related to general intelligence than non-P-FIT

Fig. 2. Brain heatmaps illustrating the absolute asymmetry of the 34 cortical regions: Means (left) and standard deviations (right).
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asymmetry for cortical surface area, volume or thickness.

3.4. Proportional regional contribution analysis

To investigate how similar equal and proportional region con-
tribution methods for calculating asymmetry are, correlations were
conducted. The correlations were between the two overall asymmetry
scores (equal and proportional) for each of the 636 participants. There
was no significant correlation between equal and proportional asym-
metries for surface area: r=−0.009 (p= .82). There were significant

correlations for volume, r=0.099 (p= .01), and thickness, r=0.274
(p < .001). However, these correlations (particularly for volume) are
weak. The weakness (and, in the case of surface area, non-significance)
of these correlations highlights that these two methods of calculating
cortical asymmetry result in very different outcomes.

Using the method of calculating asymmetry where each region
contributed proportionally to the overall asymmetry score, there were
no significant associations between any measures of cortical asymmetry
and general intelligence (see Fig. 5). As in the equal regional con-
tribution analysis, the three cortical asymmetry measures (surface area,
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Fig. 3. Simplified model estimating the association between cortical surface area asymmetry, volume asymmetry and thickness asymmetry (for equal-contribution
asymmetry values) and general intelligence. Non-significant paths are illustrated with dotted lines.

Table 2
Tests for differences in general intelligence effect sizes between cortical thickness asymmetry and (i) surface area asymmetry and (ii) volume asymmetry.

Model Model constraints χ2 df AIC BIC Model of comparison Δχ2 Δ df Δ p

i None 224.57 96 32,939 33,089 – – – –
ii Thickness asymmetry and surface area asymmetry 233.41 97 32,946 33,092 i 8.84 1 0.003
iii Thickness asymmetry and volume asymmetry 234.00 97 32,947 33,092 i 9.43 1 0.002
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volume and thickness) were allowed to correlate with each other. For
all paths, p > .3 and SE=0.046. The Bayes Factor correlations pro-
vided compelling evidence in favour of the null hypothesis for all three
measures: for surface area (BF=0.22; the null hypothesis of no cor-
relation was 4.63 times more likely than the alternative), for volume
(BF= 0.10; the null hypothesis of no correlation was 10.51 times more
likely than the alternative) and for thickness (BF= 0.16; the null hy-
pothesis was 6.34 times more likely than the alternative).

3.5. White matter fractional anisotropy asymmetry model

White matter fractional anisotropy asymmetry scores were calcu-
lated so that each tract contributed equally. Directional asymmetries
were calculated by subtracting the right white matter tract fractional
anisotropy value from the left. No absolute asymmetries were in-
dividually associated with general intelligence (all β-values < 0.08, all
p-values > .05; see Supplementary Table 1). A structural equation
model was estimated to test the association between global white
matter fractional anisotropy asymmetry and general intelligence (see
Supplementary Fig. 5). The association was small and non-significant
(β=0.03, SE=0.05, p= .512). The Bayes Factor correlations con-
firmed that there was compelling evidence in favour of the null hy-
pothesis (BF=0.11; the null hypothesis of no correlation was 9.28
times more likely than the alternative). Therefore, there was no evi-
dence that combined white matter fractional anisotropy asymmetry was
significantly associated with general intelligence.

4. Discussion

The association between fluctuating brain asymmetry and general
intelligence was estimated in a sample of older adults. Both regional
and global measurements were used for grey matter (cortical volume,

surface area and cortical thickness) and white matter fractional aniso-
tropy, and general intelligence was estimated from a wide variety of
tests covering several cognitive domains. The method of calculating
fluctuating asymmetry made a difference to the results; it is important
for future research to carefully consider and justify whether equal or
proportional methods are used for calculating cortical asymmetry.
There was an association between cortical thickness asymmetry and
intelligence when regions contributed equally to the estimation of
cortical asymmetry, but there were no such associations when the
contribution of each region was proportional to its size. Cortical surface
area and volume showed no significant relations to intelligence in any
analysis (all p-values > .3). For most analyses, Bayes Factor correla-
tions provided compelling evidence for the null hypothesis of no asso-
ciation between brain asymmetry and intelligence.

Using the method where regions contributed equally to the fluctu-
ating asymmetry score, as in Yeo et al. (2016), asymmetry in global
cortical thickness was significantly negatively associated with general
intelligence. This association was modest (r=−0.18), as expected
from similar asymmetry-cognitive associations (e.g. Bates, 2007;
Furlow et al., 1997; Yeo et al., 2016). An exploratory analysis in a
previous study suggests a positive association between cortical thick-
ness asymmetry and working memory and vocabulary performance in
young adults (N=100, Plessen et al., 2014). However, like most pre-
vious studies, our finding suggested that higher fluctuating asymmetry
is linked to negative cognitive outcomes (e.g. Bates, 2007; Hope, Bates,
Dykiert, et al., 2013; Hope, Bates, Penke, et al., 2013). Further in-
vestigation is required, as there are age-related differences in both
cortical thickness asymmetry (Thambisetty et al., 2010) and general
intelligence (MacDonald, Li, & Bäckman, 2009) that might affect as-
sociations between these variables in samples of different ages. For
example, Plessen et al. (2014) found that cortical thickness decreased
with age in the right hemisphere but increased in the left hemisphere.

Fig. 4. Simplified mediation model estimating the mediation of thickness asymmetry on the association between childhood SES and general intelligence. See also
Fig. 3 and Supplementary Table 10.

Table 3
β-values, SEs and p-values of paths from measures of cortical asymmetry to general intelligence for all regions, P-FIT and non-P-FIT regions.

All regions P-FIT Non-P-FIT

Surface area asymmetry −0.03 (0.07), p= .678 −0.112 (0.063), p= .076 0.057 (0.066), p= .389
Volume asymmetry 0.07 (0.07), p= .286) 0.038 (0.064), p=.549 0.047 (0.067), p= .483
Thickness asymmetry −0.18 (0.05), p < .001 −0.068 (0.050), p= .173 −0.131 (0.049), p= .008
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The relationship between global cortical thickness asymmetry and
general intelligence can be thought of in context with relationships
between fluctuating body asymmetry and cognitive performance (e.g.
Bates, 2007; Furlow et al., 1997). As both brain and body asymmetries
are reliably negatively associated with intelligence measures, it seems
that the relationship between cortical thickness and general intelligence
is unlikely to be causal. Instead, both brain and body asymmetries
might be markers of developmental instability, which might impact
general intelligence (van Dongen, 2006). Future work with both body
and brain asymmetries could capture more variance in intelligence, and
aid interpretation.

There was no association between global cortical surface area
asymmetry (calculated with equal regional contributions) and general
intelligence. This result appears to be inconsistent with Yeo et al. (2016;
N=244), who reported a significant negative association (r=−0.15),

despite using the same methods for cortical asymmetry calculation and
a full-scale IQ measure. Differences in findings could be age-related.
Yeo et al. (2016) used a sample of 18–33-year-olds, whereas the current
study sampled a narrower age range of approximately 73-years-old. It
could be that relationships between cortical surface area measures and
intelligence become harder to detect amidst the life-long accumulation
of random structural influences (Dotson et al., 2016; Plessen et al.,
2014). It could also be that the relationship between global cortical
surface area asymmetry and intelligence changes with age. As the
current study found an association between cortical thickness asym-
metry and general intelligence, and Yeo et al. (2016) found an asso-
ciation between cortical surface area asymmetry and general in-
telligence, the differential genetic roots and differential ageing of
cortical thickness and surface area could also explain differences in
results. Whilst cortical surface area and cortical thickness are both

Table 4
Equality constraint comparisons between P-FIT and non-P-FIT models. Δ values refer to the difference tests between models.

Model Model constraints χ2 df AIC BIC Model of comparison Δχ2 Δ df Δ p

A None 261.86 132 21,793 21,956 – – – –
B P-FIT and non-P-FIT surface area asymmetry 264.70 133 21,793 21,952 A 2.84 1 0.092
C P-FIT and non-P-FIT volume asymmetry 261.88 133 21,791 21,949 A 0.02 1 0.896
D P-FIT and non-P-FIT thickness asymmetry 262.90 133 21,792 21,950 A 1.04 1 0.308
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highly heritable, they are essentially genetically unrelated (Panizzon
et al., 2009) and cortical thickness is much better preserved with
normal ageing, compared to surface area (Dickerson et al., 2009).

In addition, there was no significant association between cortical
volume fluctuating asymmetry and general intelligence. Cortical vo-
lume is essentially the product of cortical thickness and cortical surface
area and, in this sample, surface area and volume were more pheno-
typically similar than surface area and thickness (Cox et al., 2018).
Therefore, because there was no association between surface area
asymmetry and general intelligence, it follows that there was no asso-
ciation between volume asymmetry and general intelligence. Previous
studies have not investigated a link between overall volume asymmetry
and general intelligence. Instead, they have focused on specific regions
and specific populations (e.g. Dougherty et al., 2016; Woolard &
Heckers, 2012). Future research should investigate whether cortical
volume asymmetry is associated with general intelligence in healthy
young adults.

P-FIT asymmetry was not more strongly associated with general
intelligence than non-P-FIT asymmetry in 73-year-olds for cortical
surface area, volume or thickness. Therefore, our findings do not sup-
port Yeo et al.'s (2016) suggestion that frontoparietal surface area
asymmetry predicted general intelligence whereas non-frontoparietal
surface area asymmetry did not. This discrepancy could, once again, be
explained by age differences: frontoparietal integrity decreases more
rapidly than non-frontoparietal integrity after 60 years old (e.g.
Rönnlund, Sundström, & Nilsson, 2015), and this could, in turn, affect
associations between frontoparietal regions and general intelligence.
Regarding the P-FIT theory, frontoparietal asymmetry does not appear
to be a marker of the biological basis of general intelligence in older
adults. It is possible that frontoparietal regions become less specialised
for cognitive abilities in older age (see Campbell, Grady, Ng, & Hasher,
2012), making the P-FIT less meaningful in older adults. This un-
certainty provides motivation for future studies to test the P-FIT sepa-
rately in older adults.

Global cortical thickness asymmetry was not associated with
childhood SES, providing evidence against the hypothesis that asym-
metry is a significant mediator of the association between childhood
SES and general intelligence. However, the participants in this study
might not be representative of 73-year-olds in the general population,
because they are a selective sample, who were self-motivated to parti-
cipate in this research. Due to the nature of the sample selection, the
effect size may have been attenuated, as there are fewer people with
low SES backgrounds compared to the general population. The sample
size may not have been large enough to reliably estimate the likely
modest association between childhood SES and thickness asymmetry.
As brain asymmetry in older age may be affected by multiple en-
vironmental factors, future research using representative samples
should investigate whether childhood cortical asymmetry is associated
with childhood SES.

There are differences between asymmetry for individual regions
found in this study and in previous studies. For example, Wang et al.
(2007) found significant directional asymmetry in the posterior cingu-
late in a sample of young adults. However, in the current study, there
was no directional asymmetry in the posterior cingulate. Furthermore,
unlike the current study, Yeo et al. (2016) found significant associations
between surface area asymmetry to general intelligence in the frontal
pole, caudal middle frontal, fusiform, isthmus cingulate and lingual
regions. Unlike Yeo et al. (2016), the current study found significant
associations from surface area asymmetry to general intelligence in the
precuneus and rostral anterior cingulate regions. As the same methods
were used, these findings suggest that the association between surface
area asymmetry and general intelligence might change on a regional
basis with age, though it could equally be that these findings are false
positives or are the consequence of overfitting to the specific samples in
question. To aid interpretation of these differences, future studies with
longitudinal data could characterise region-based age-related changes

in cortical surface area asymmetry, and also in volume and thickness.
This research would be especially worthwhile in large samples covering
a wide age range.

Regional and global white matter tract fractional anisotropy fluc-
tuating asymmetries were not associated with general intelligence in
73-year-olds. It may therefore be the case that white matter fractional
anisotropy asymmetry is not associated with cognitive performance.
However, future research should investigate this association in younger
adults. Alternatively, it could be more appropriate to investigate asso-
ciations between white matter asymmetry in specific tracts and cogni-
tive abilities relevant to them, as effects might be undetectable or ne-
gated when white matter tract asymmetry is combined. There are also
other features of white matter tracts that could be investigated – for
example, number of streamlines, which is a proxy measure for volume.
It is also notable that our regional and global metrics were based upon a
limited number of white matter pathways – these were selected due to
our ability to reliably identify and measure their microstructure, but
they comprise a relatively low proportion of the brain's overall white
matter connective tissue. The method we used to identify tracts,
probabilistic neighbourhood tractography (PNT), uses single seed point
tractography to generate reliable segmentations of white matter path-
ways across populations. It is set up to segment 16 major tracts, in-
cluding the arcuate fasciculus, all of which have clearly defined shapes
which is central to the segmentation process. It would have been in-
teresting, for example, to include the superior longitudinal fasciculus,
but it cannot currently be identified using PNT, and therefore is outside
the scope of the present paper.

It could be argued that weighting the cortical parcels by volume
may not reflect that the ROIs can be conceived of as ‘units’ in terms of
variations in cytoarchitecture and hodology. As such, developmental
influence might impact each Desikan atlas ROI differently. Such a ra-
tionale may support an unweighted approach to asymmetry. However,
there are many potential atlases on which to draw; whereas the Desikan
atlas allows greater comparability with prior work, other atlases are
variously configured to reflect cytoarchitectural regional classifications
according to different brain cartographers and offer different levels of
granularity (e.g. Glasser et al., 2016; Scholtens, de Reus, de Lange,
Schmidt, & van den Heuvel, 2018). Current knowledge of the corre-
spondence between gyral patterns and underlying cytoarchitecture has
not converged on the Desikan atlas as necessarily optimal for de-
marcating the boundaries of distinct cytoarchitectural ‘units’ (e.g.
Bohland, Bokil, Allen, & Mitra, 2009; Cox et al., 2014).

The current study had a large sample size (N=636) compared to
other studies of intelligence and brain asymmetry, and a comprehensive
battery of cognitive tests. The MRI scans were completed in the same
scanner at the sample clinic. The association between cortical thickness
asymmetry and general intelligence was highly significant, and would
survive Bonferroni correction across 166 tests. Both a strength and a
limitation of the current study was the narrow age range of the sample.
Whereas this enables stronger conclusions about effects in 73-year-olds,
and mitigates the possibly-confounding effects of within-sample
chronological age, it does not allow exploration of age-related differ-
ences, a factor which – as noted above – may moderate asymmetry-
intelligence associations, yielding different results from those of pre-
vious work on asymmetry.

5. Conclusion

When regional measures contributed equally to fluctuating brain
asymmetry scores, cortical thickness asymmetry was negatively asso-
ciated (β=−0.18) with general intelligence in 73-year-olds. There
were no associations between general intelligence and cortical surface
area, cortical volume, or white matter fractional anisotropy fluctuating
asymmetries. Cortical thickness asymmetry was not associated with
childhood SES which did not mediate the association between child-
hood SES and general intelligence. There was no difference in the
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intelligence-cortical asymmetry association between P-FIT and non-P-
FIT regions. These findings differ from Yeo et al. (2016), who found that
there was a negative association between surface area asymmetry and
intelligence, and that asymmetry of frontoparietal regions, but not
asymmetry of non-frontoparietal regions was associated with in-
telligence. In contrast, when regional measures contributed pro-
portionally to cortical hemispheric asymmetry metrics, there were no
associations between cortical surface area, cortical volume or cortical
thickness and general intelligence in 73-year-olds. This study raises
questions about how fluctuating brain asymmetry should be measured
and motivates future research to consider how best to characterise brain
asymmetry.
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