1,731 research outputs found
Porous Titanium Cylinders Obtained by the Freeze-Casting Technique: Influence of Process Parameters on Porosity and Mechanical Behavior
The discrepancy between the stiffness of commercially pure titanium and cortical bone tissue compromises its success as a biomaterial. The use of porous titanium has been widely studied, however, it is still challenging to obtain materials able to replicate the porous structure of the bones (content, size, morphology and distribution). In this work, the freeze‐casting technique is used to manufacture cylinders with elongated porosity, using a home‐made and economical device. The relationship between the processing parameters (diameter and material of the mold, temperature gradient), microstructural features and mechanical properties is established and discussed, in terms of ensuring biomechanical and biofunctional balance. The cylinders have a gradient porosity suitable for use in dentistry, presenting higher Young’s modulus at the bottom, near the cold spot and, therefore better mechanical resistance (it would be in contact with a prosthetic crown), while the opposite side, the hot spot, has bigger, elongated pores and walls. Ministry of Economy and Competitiveness of Spain grant MAT2015‐71284‐P FEDER‐Junta de Andalucía Research Project (Modeling and implementation of the freeze casting technique: gradients of porosity with a tribomechanical equilibrium and electro‐stimulated cellular behavior).
Fabrication and characterization of superficially modified porous dental implants
Stress-shielding and loosening compromise the success of dental implants under real-life service conditions. This work evaluates the mechanical behavior of superficially modified porous titanium dental implants fabricated by two different routes: conventional powder metallurgy and space-holder techniques. A novel, feasible and repetitive protocol of micro-milling of the implant thread (before sintering), as well as surface modification treatments (after sintering) are also implemented. The discussion is conducted in terms of the influence of porosity and surface roughness on the stiffness and yield strength of implants. The macro-pores concentrate stress locally, and, at the same time, they could act as a barrier to the propagation of micro-cracks. Higher rugosity was observed for virgin implants obtained with spacer particles. Concerning superficially modified implants, while bioglass 1393 was the most effective coating due to its greater infiltration and adhesion capacity, chemical etching could improve osteoblast adhesion because modifies the roughness of the implant surface.Ministry of Science and Innovation of Spain PID2019-109371GB-I00Junta de Andalucía–FEDER (Spain) US-125977
A LoRaWAN testbed design for supporting critical situations: prototype and evaluation
The Internet of Things is one of the hottest topics in communications today, with current revenues of $151B, around 7 billion connected devices, and an unprecedented growth expected for next years. A massive number of sensors and actuators are expected to emerge, requiring new wireless technologies that can extend their battery life and can cover large areas. LoRaWAN is one of the most outstanding technologies which fulfill these demands, attracting the attention of both academia and industry. In this paper, the design of a LoRaWAN testbed to support critical situations, such as emergency scenarios or natural disasters, is proposed. This self-healing LoRaWAN network architecture will provide resilience when part of the equipment in the core network may become faulty. This resilience is achieved by virtualizing and properly orchestrating the different network entities. Different options have been designed and implemented as real prototypes. Based on our performance evaluation, we claim that the usage of microservice orchestration with several replicas of the LoRaWAN network entities and a load balancer produces an almost seamless recovery which makes it a proper solution to recover after a system crash caused by any catastrophic event.Postprint (published version
High-throughput biointerfaces for direct, label-free, and multiplexed metaplasmonic biosensing
In recent years, metaplasmonic biosensors have emerged as a novel counterpart of well-established plasmonic biosensors based on thin metallic layers. Metaplasmonic biosensors offer high potential for sensor miniaturiza-tion, extreme sensitivity biosensing, and high multiplexing capabilities with detection methods free of coupling optical elements. These capabilities make metaplasmonic biosensors highly attractive for Point-of-Care and handled/portable devices or novel On-Chip devices; as a result, it has increased the number of prototypes and potential applications that emerged during the last years. One of the main challenges to achieving fully operative devices is the achievement of high-throughput biointerfaces for sensitive and selective biodetection in complex media. Despite the superior surface sensitivity achieved by metaplasmonic sensors compared to conventional plasmonic sensors based on metallic thin films, the main limitations to achieving high-throughput and multiplexed biosensing usually are associated with the sensitivity and selectivity of the bioin-terface and, as a consequence, their application to the direct analysis of real complex samples. This graphical review discusses the potential challenges and capabilities of different biofunctionalization strategies, biorecog-nition elements, and antifouling strategies to achieve scalable and high-throughput metaplasmonic biosensing for Point-of-Care devices and bioengineering applications like Organs-On-Chip
Photo-Fenton oxidation of cylindrospermopsin at neutral pH with LEDs
Cylindrospermopsin (CYN) is a potent cyanobacterial toxin found in freshwaters worldwide. In this work, the feasibility of the photo-Fenton process under neutral pH using light emitting diodes as irradiation source for the removal of this hazardous cyanotoxin from freshwater was investigated. The impact of the kind of iron chelating agent (ethylenediamine-N, N′-disuccinic acid vs. ethylenedinitrilotetraacetic acid) as well as the effect of the main operating conditions viz. H2O2 dose, Fe(III) load, initial CYN concentration, and Fe(III):EDDS molar ratio on the performance of the process was systematically evaluated. EDDS was selected as the most appropriate iron chelating agent considering the kinetics of the process and the environmental impact (Vibrio fischeri and Artemia salina). Under optimized conditions ([H2O2] = 30 mg L−1; [Fe(III)] = 5 mg L−1; Fe(III):ligand = 1:0.5 (molar ratio)), complete removal of CYN was achieved in 15-min reaction time. Furthermore, the catalytic system showed to be effective in real water matrices (river and reservoir waters) spiked with CYN. Although the presence of inorganic ions (mainly HCO3−/CO32−) and dissolved organic carbon decreased the oxidation rate of CYN due to scavenging reactions and iron coordination, respectively, complete elimination of the cyanotoxin was achieved in all cases. The fate of EDDS along the process was also evaluated to demonstrate that the catalytic system investigated, apart from its effectiveness, warrants the complete absence of residues after reaction. Therefore, the proposed system constitutes a promising method for cyanotoxin treatment either as a drinking water treatment step in conventional plants or as a potential remediation strategy in the natural environmentOpen Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This research has been supported
by the CYTED Ibero-American Science and Technology Program
for Development (CYTED-2019) through the project TALGENTOX
(PCI2020-112013) and by the Spanish Ministry for Science and Innovation (MICINN) through the project PID2019-105079RB-I00. D.
Ortiz has received a FPU predoctoral grant (FPU19/04816) from the
Spanish Ministry of Universities. M. Munoz has received a Ramón
y Cajal postdoctoral contract (RYC-2016–20648) from the Spanish
MINEC
Extended WKB method, resonances and supersymmetric radial barriers
Semiclassical approximations are implemented in the calculation of position
and width of low energy resonances for radial barriers. The numerical
integrations are delimited by t/T<<8, with t the period of a classical particle
in the barrier trap and T the resonance lifetime. These energies are used in
the construction of `haired' short range potentials as the supersymmetric
partners of a given radial barrier. The new potentials could be useful in the
study of the transient phenomena which give rise to the Moshinsky's diffraction
in time.Comment: 12 pages, 4 figures, 3 table
Effects of discontinued endurance methods on VO2max in judokas
Este estudio tuvo como objetivo investigar el efecto de dos diferentes planes de entrenamiento de resistencia basados en la metodología discontinua (intermitente e interválica), sobre el VO2Máx de atletas Antioqueños de Judo de rendimiento.
Para ello, 21 Judokas de la Selección Antioqueña pertenecientes a la categoría Senior (20,43±4,18 años), fueron distribuidos aleatoriamente en tres grupos, dos grupos experimentales y un grupo control. Ambos grupos experimentales entrenaron la resistencia durante 4 semanas con 4 estímulos por semana, uno de los grupos experimentales basó su entrenamiento en el método interválico y el otro en el intermitente. Por su parte, el grupo control no realizó ningún tipo de entrenamiento de la resistencia.
No se hallaron diferencias significativas entre pretest y postest de ninguno de los grupos ni experimentales ni el de grupo control (p>0,05). Se concluyó que el entrenamiento de la resistencia basado en métodos discontinuos no produjo diferencias significativas en el VO2Máx
- …