77 research outputs found
Advance Approach towards Key Feature Extraction Using Designed Filters on Different Image Format for Providing Security
In fast growing database repository system, image as data is one of the important concern despite text or numeric. Still we can’t replace test on any cost but for advancement, information may be managed with images. Therefore image processing is a wide area for the researcher. Many stages of processing of image provide researchers with new ideas to keep information safe with better way. Feature extraction, segmentation, recognition are the key areas of the image processing which helps to enhance the quality of working with images. Paper presents the comparison between image formats like .jpg, .png, .bmp, .gif. This paper is focused on the feature extraction and segmentation stages with background removal process. There are two filters, one is integer filter and second one is floating point Filter, which is used for the key feature extraction from image. These filters applied on the different images of different formats and visually compare the results
Network Reconfiguration in Distribution System by Software Simulation for Loss Reduction
The main aim of the distribution companies is to reduce their operating costs to get ahead of competition. One of the most popular approach is to increase the degree of reliability of distribution system. The management of network defeats (e.g. earth fault, short circuits) offers a lot of feasibilities for automation. The main jobs are fault localization, fault detachment and system refurbishing. The network manipulator needs excellent knowledge about the controlled network area to accomplish these tasks efficiently. In this paper a fault management system is described which magnifies the reliability of the system with the help of network reconfiguration. The fault localization, segregation and refurbishing allowance to remedy the operator from these demanding tasks during network defeats. This paper present a CYMDIST based analysis for the loss minimization problem. This method is tested in 11 KV distribution systems for loss minimization
PERFORMANCE ANALYSIS OF ECG QRS COMPLEX DETECTION USING MORPHOLOGICAL OPERATORS
ABSTRACT The QRS complex detection is one of the most essential tasks in ECG analysis. This paper presents an algorithm of QRS complex detection using morphological operators. The proposed algorithm utilizes the dilation-erosion mathematical morphology filtering to suppress the background noise and remove the baseline drift. Then the modulus accumulation is used to enhance the signal and improve signal-to-noise ratio. The performance of the algorithm is evaluated with MIT-BIH arrhythmia database and wearable ECG Data. The algorithm gets the high detection rate and high speed
Differential livelihood adaptation to social-ecological change in coastal Bangladesh
Social-ecological changes, brought about by the rapid growth of the aquaculture industry and the increased occurrence of climatic stressors, have significantly affected the livelihoods of coastal communities in Asian mega-deltas. This paper explores the livelihood adaptation responses of households of different wealth classes, the heterogeneous adaptation opportunities, barriers and limits (OBLs) faced by these households and the dynamic ways in which these factors interact to enhance or impede adaptive capacities. A mixed methods approach was used to collect empirical evidence from two villages in coastal Bangladesh. Findings reveal that households’ adaptive capacities largely depend on their wealth status, which not only determine their availability of productive resources, but also empower them to navigate social-ecological change in desirable ways. Households operate within a shared response space, which is shaped by the broader socio-economic and political landscape, as well as their previous decisions that can lock them in to particular pathways. While an adaptive response may be effective for one social group, it may cause negative externalities that can undermine the adaptation options and outcomes of another group. Adaptation OBLs interact in complex ways; the extent to which these OBLs affect different households depend on the specific livelihood activities being considered and the differential values and interests they hold. To ensure more equitable and environmentally sustainable livelihoods in future, policies and programs should aim to expand households’ adaptation space by accounting for the heterogeneous needs and complex interdependencies between response processes of different groups
Limited Relationship between Cervico-Vaginal Fluid Cytokine Profiles and Cervical Shortening in Women at High Risk of Spontaneous Preterm Birth
Objective: to determine the relationship between high vaginal pro-inflammatory cytokines and cervical shortening in women at high risk of spontaneous preterm labor and to assess the influence of cervical cerclage and vaginal progesterone on this relationship. Methods: this prospective longitudinal observational study assessed 112 women with at least one previous preterm delivery between 16 and 34 weeks’ gestation. Transvaginal cervical length was measured and cervico-vaginal fluid sampled every two weeks until 28 weeks. If the cervix shortened (<25 mm) before 24 weeks’ gestation, women (cases) were randomly assigned to cerclage or progesterone and sampled weekly. Cytokine concentrations were measured in a subset of cervico-vaginal fluid samples (n = 477 from 78 women) by 11-plex fluid-phase immunoassay. Results: all 11 inflammatory cytokines investigated were detected in cervico-vaginal fluid from women at high risk of preterm birth, irrespective of later cervical shortening. At less than 24 weeks’ gestation and prior to intervention, women destined to develop a short cervix (n = 36) exhibited higher cervico-vaginal concentrations than controls (n = 42) of granulocyte-macrophage colony-stimulating factor [(GM-CSF) 16.2 fold increase, confidence interval (CI) 1.8–147; p = 0.01] and monocyte chemotactic protein-1 [(MCP-1) 4.8, CI 1.0–23.0; p = 0.05]. Other cytokines were similar between cases and controls. Progesterone treatment did not suppress cytokine concentrations. Interleukin (IL)-6, IL-8, granulocyte colony-stimulating factor (G-CSF), interferon (IFN)-γ and tumour necrosis factor (TNF)-α concentrations were higher following randomization to cerclage versus progesterone (p<0.05). Cerclage, but not progesterone treatment, was followed by a significant increase in cervical length [mean 11.4 mm, CI 5.0–17.7; p<0.001]. Conclusions: although GM-CSF and MCP-1 cervico-vaginal fluid concentrations were raised, the majority of cervico-vaginal cytokines did not increase in association with cervical shortening. Progesterone treatment showed no significant anti-inflammation action on cytokine concentrations. Cerclage insertion was associated with an increase in the majority of inflammatory markers and cervical length
SYT1-associated neurodevelopmental disorder: a case series.
Synaptotagmin 1 (SYT1) is a critical mediator of fast, synchronous, calcium-dependent neurotransmitter release and also modulates synaptic vesicle endocytosis. This paper describes 11 patients with de novo heterozygous missense mutations in SYT1. All mutations alter highly conserved residues, and cluster in two regions of the SYT1 C2B domain at positions Met303 (M303K), Asp304 (D304G), Asp366 (D366E), Ile368 (I368T) and Asn371 (N371K). Phenotypic features include infantile hypotonia, congenital ophthalmic abnormalities, childhood-onset hyperkinetic movement disorders, motor stereotypies, and developmental delay varying in severity from moderate to profound. Behavioural characteristics include sleep disturbance and episodic agitation. Absence of epileptic seizures and normal orbitofrontal head circumference are important negative features. Structural MRI is unremarkable but EEG disturbance is universal, characterized by intermittent low frequency high amplitude oscillations. The functional impact of these five de novo SYT1 mutations has been assessed by expressing rat SYT1 protein containing the equivalent human variants in wild-type mouse primary hippocampal cultures. All mutant forms of SYT1 were expressed at levels approximately equal to endogenous wild-type protein, and correctly localized to nerve terminals at rest, except for SYT1M303K, which was expressed at a lower level and failed to localize at nerve terminals. Following stimulation, SYT1I368T and SYT1N371K relocalized to nerve terminals at least as efficiently as wild-type SYT1. However, SYT1D304G and SYT1D366E failed to relocalize to nerve terminals following stimulation, indicative of impairments in endocytic retrieval and trafficking of SYT1. In addition, the presence of SYT1 variants at nerve terminals induced a slowing of exocytic rate following sustained action potential stimulation. The extent of disturbance to synaptic vesicle kinetics is mirrored by the severity of the affected individuals' phenotypes, suggesting that the efficiency of SYT1-mediated neurotransmitter release is critical to cognitive development. In summary, de novo dominant SYT1 missense mutations are associated with a recognizable neurodevelopmental syndrome, and further cases can now be diagnosed based on clinical features, electrophysiological signature and mutation characteristics. Variation in phenotype severity may reflect mutation-specific impact on the diverse physiological functions of SYT1
Zinc and copper supplementation in acute diarrhea in children: a double-blind randomized controlled trial
Lamin A Rod Domain Mutants Target Heterochromatin Protein 1α and β for Proteasomal Degradation by Activation of F-Box Protein, FBXW10
Lamins are major structural proteins of the nucleus and contribute to the organization of various nuclear functions. Mutations in the human lamin A gene cause a number of highly degenerative diseases, collectively termed as laminopathies. Cells expressing lamin mutations exhibit abnormal nuclear morphology and altered heterochromatin organization; however, the mechanisms responsible for these defects are not well understood.The lamin A rod domain mutants G232E, Q294P and R386K are either diffusely distributed or form large aggregates in the nucleoplasm, resulting in aberrant nuclear morphology in various cell types. We examined the effects of these lamin mutants on the distribution of heterochromatin protein 1 (HP1) isoforms. HeLa cells expressing these mutants showed a heterogeneous pattern of HP1alpha and beta depletion but without altering HP1gamma levels. Changes in HP1alpha and beta were not observed in cells expressing wild-type lamin A or mutant R482L, which assembled normally at the nuclear rim. Treatment with proteasomal inhibitors led to restoration of levels of HP1 isoforms and also resulted in stable association of lamin mutants with the nuclear periphery, rim localization of the inner nuclear membrane lamin-binding protein emerin and partial improvement of nuclear morphology. A comparison of the stability of HP1 isoforms indicated that HP1alpha and beta displayed increased turnover and higher basal levels of ubiquitination than HP1gamma. Transcript analysis of components of the ubiquitination pathway showed that a specific F-box protein, FBXW10 was induced several-fold in cells expressing lamin mutants. Importantly, ectopic expression of FBXW10 in HeLa cells led to depletion of HP1alpha and beta without alteration of HP1gamma levels.Mislocalized lamins can induce ubiquitin-mediated proteasomal degradation of certain HP1 isoforms by activation of FBXW10, a member of the F-box family of proteins that is involved in E3 ubiquitin ligase activity
Barrier-to-Autointegration Factor Proteome Reveals Chromatin-Regulatory Partners
Nuclear lamin filaments and associated proteins form a nucleoskeletal (“lamina”) network required for transcription, replication, chromatin organization and epigenetic regulation in metazoans. Lamina defects cause human disease (“laminopathies”) and are linked to aging. Barrier-to-autointegration factor (BAF) is a mobile and essential component of the nuclear lamina that binds directly to histones, lamins and LEM-domain proteins, including the inner nuclear membrane protein emerin, and has roles in chromatin structure, mitosis and gene regulation. To understand BAF's mechanisms of action, BAF associated proteins were affinity-purified from HeLa cell nuclear lysates using BAF-conjugated beads, and identified by tandem mass spectrometry or independently identified and quantified using the iTRAQ method. We recovered A- and B-type lamins and core histones, all known to bind BAF directly, plus four human transcription factors (Requiem, NonO, p15, LEDGF), disease-linked proteins (e.g., Huntingtin, Treacle) and several proteins and enzymes that regulate chromatin. Association with endogenous BAF was independently validated by co-immunoprecipitation from HeLa cells for seven candidates including Requiem, poly(ADP-ribose) polymerase 1 (PARP1), retinoblastoma binding protein 4 (RBBP4), damage-specific DNA binding protein 1 (DDB1) and DDB2. Interestingly, endogenous BAF and emerin each associated with DDB2 and CUL4A in a UV- and time-dependent manner, suggesting BAF and emerin have dynamic roles in genome integrity and might help couple DNA damage responses to the nuclear lamina network. We conclude this proteome is a rich source of candidate partners for BAF and potentially also A- and B-type lamins, which may reveal how chromatin regulation and genome integrity are linked to nuclear structure
Gold Nanoparticles as a Direct and Rapid Sensor for Sensitive Analytical Detection of Biogenic Amines
- …