16 research outputs found

    Rate 3/4 coded 16-QAM for uplink applications

    Get PDF
    First phase development of an advanced modulation technology which synergistically combines coding and modulation to achieve 2 bits per second per Hertz bandwidth efficiency in satellite demodulators is nearing completion. A proof-of-concept model is being developed to demonstrate technology feasibility, establish practical bandwidth efficiency limitations, and provide a data base for the design and development of engineering model satellite demodulators. The basic considerations leading to the choice of 4 x 4 quadrature amplitude modulation (16-QAM) and its associated coding format are discussed, along with the basic implementation of the carrier and clock recovery, automatic gain control, and decoding process. Preliminary performance results are presented. Spectra for the modulated signal shows the effects of the square root Nyquist filters in the modulation. Bit error rate (BER) results for the encoder/decoder subsystem show near ideal results, although power consumption is high and baseband BER performance of the Nyquist filter set is poor. Recommendations regarding the present system to improve BER performance and acquisition speed are given

    Experimental realisation of multi-qubit gates using electron paramagnetic resonance

    Get PDF
    Abstract Quantum information processing promises to revolutionise computing; quantum algorithms have been discovered that address common tasks significantly more efficiently than their classical counterparts. For a physical system to be a viable quantum computer it must be possible to initialise its quantum state, to realise a set of universal quantum logic gates, including at least one multi-qubit gate, and to make measurements of qubit states. Molecular Electron Spin Qubits (MESQs) have been proposed to fulfil these criteria, as their bottom-up synthesis should facilitate tuning properties as desired and the reproducible production of multi-MESQ structures. Here we explore how to perform a two-qubit entangling gate on a multi-MESQ system, and how to readout the state via quantum state tomography. We propose methods of accomplishing both procedures using multifrequency pulse Electron Paramagnetic Resonance (EPR) and apply them to a model MESQ structure consisting of two nitroxide spin centres. Our results confirm the methodological principles and shed light on the experimental hurdles which must be overcome to realise a demonstration of controlled entanglement on this system

    Unraveling the Mechanisms of Nonradiative Deactivation in Model Peptides Following Photoexcitation of a Phenylalanine Residue

    No full text
    International audienceThe mechanisms of nonradiative deactivation of a phenylalanine residue after near-UV photoexcitation have been investigated in an isolated peptide chain model (N-acetylphenylalaninylamide, NAPA) both experimentally and theoretically. Lifetime measurements at the origin of the first ππ* state of jet-cooled NAPA molecules have shown that (i) among the three most stable conformers of the molecule, the folded conformer NAPA B is 50-times shorter lived than the extended major conformer NAPA A and (ii) this lifetime is virtually insensitive to deuteration at the NH2 and NH sites. Concurrent time-dependent density functional theory (TDDFT) based nonadiabatic dynamics simulations in the full dimensionality, carried out for the NAPA B conformer, provided direct insights on novel classes of ultrafast deactivation mechanisms, proceeding through several conical intersections and leading in fine to the ground state. These mechanisms are found to be triggered either (i) by a stretch of the NPheH bond, which leads to an H-transfer to the ring, or (ii) by specific backbone amide distortions. The potential energy surfaces of the NAPA conformers along these critical pathways have been characterized more accurately using the coupled cluster doubles (CC2) method and shown to exhibit barriers that can be overcome with moderate excess energies. These results analyzed in the light of the experimental findings enabled us to assign the short lifetime of NAPA B conformer to a number of easily accessible exit channels from the initial ππ* surface, most importantly the one involving a transfer of electronic excitation to an nπ* surface, induced by distortions of the backbone peptide bond
    corecore