501 research outputs found

    Viterbi decoding strategies for 5 GHz wireless LAN systems

    Get PDF

    A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards

    Get PDF

    A constrained approach to pre-compensation for TDD OFDM systems

    Get PDF

    EFEITO DA FERTILIZAÇÃO AZOTADA NA DINÂMICA DE

    Get PDF
    RESUMO Este trabalho teve como objectivo estudar a influência da aplicação de diferentes quantidades de azoto, repartidas por quatro aplicações, na disponibilidade de azoto nítrico no solo, no comprimento radical, na concentração de azoto nas folhas e na produção comercial de cebola de dias médios (cv. Gilmar) no Alentejo. O ensaio decorreu na Centro de estudos e experimentação da Mitra da Universidade de Évora e foi delineado em blocos casualizados com quatro repetições. Os tratamentos consistiram em 4 níveis de adubação azotada (0, 37, 74 e 111 kg N ha-1), repartidos por quatro aplicações. A disponibilidade de azoto nítrico no solo, o comprimento radical e a concentração de azoto nas folhas foram avaliados aos 33, 57, 96 e 127 dias após a plantação. A densidade radical (cm cm-3) sob o bolbo e a 4 cm da linha de cultura, nas diferentes datas e profundidades de amostragem, não foi afectada pelos níveis de azoto. Ao longo ciclo, 65 a 100 % das raízes, em termos de comprimento radical, concentraram-se sob o bolbo e a densidade radical máxima alcançada foi de 1,88 cm cm-3. A profundidade máxima de enraizamento situou-se entre os 20 e 30 cm, não ultrapassando os 10 cm de profundidade até aos 32 dias após a plantação. Nas condições do ensaio, os resultados indicam como recomendável uma aplicação de 30 kg ha– 1 de azoto à plantação e um aumento da quantidade de azoto aplicado (16,2% do total de N aplicado), no início da formação do bolbo. A produção comercial aumentou com o nível de azoto, mas as produções obtidas com a aplicação de 74 kg ha-1 (5,12 kg m-2) e de 111 Kg N ha-1 (6,59 kg m-2) não diferiram significativamente. Palavras-chave: Allium cepa L, azoto nítr

    Quantization loss for convolutional decoding in Rayleigh-fading channels

    Get PDF

    Bicaudal‐D1 regulates the intracellular sorting and signalling of neurotrophin receptors

    Get PDF
    We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor‐containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain‐derived neurotrophic factor (BDNF)‐activated TrkB and p75 neurotrophin receptor (p75NTR) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co‐localisation of these neurotrophin receptors with retromer‐associated sorting nexin 1. The resulting re‐routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling‐competent TrkB isoforms and p75NTR available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand‐activated receptors

    A study of the performance of HIPERLAN/2 and IEEE 802.11a physical layers

    Get PDF

    Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination

    Get PDF
    SummaryRepair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which nucleates RAD-51-ssDNA filaments, RFS-1/RIP-1 binds and remodels pre-synaptic filaments to a stabilized, “open,” and flexible conformation, in which the ssDNA is more accessible to nuclease digestion and RAD-51 dissociation rate is reduced. Walker box mutations in RFS-1, which abolish filament remodeling, fail to stimulate RAD-51 strand exchange activity, demonstrating that remodeling is essential for RFS-1/RIP-1 function. We propose that Rad51 paralogs stimulate HR by remodeling the Rad51 filament, priming it for strand exchange with the template duplex

    Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18

    Get PDF
    Background: Rumen microbes metabolize 22:6n-3. However, pathways of 22:6n-3 biohydrogenation and ruminal microbes involved in this process are not known. In this study, we examine the ability of the well-known rumen biohydrogenating bacteria, Butyrivibrio fibrisolvens D1 and Butyrivibrio proteoclasticus P18, to hydrogenate 22:6n-3. Results: Butyrivibrio fibrisolvens D1 failed to hydrogenate 22:6n-3 (0.5 to 32 mu g/mL) in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Growth of B. fibrisolvens was delayed at the higher 22:6n-3 concentrations; however, total volatile fatty acid production was not affected. Butyrivibrio proteoclasticus P18 hydrogenated 22:6n-3 in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Biohydrogenation only started when volatile fatty acid production or growth of B. proteoclasticus P18 had been initiated, which might suggest that growth or metabolic activity is a prerequisite for the metabolism of 22:6n-3. The amount of 22:6n-3 hydrogenated was quantitatively recovered in several intermediate products eluting on the gas chromatogram between 22:6n-3 and 22:0. Formation of neither 22:0 nor 22:6 conjugated fatty acids was observed during 22:6n-3 metabolism. Extensive metabolism was observed at lower initial concentrations of 22:6n-3 (5, 10 and 20 mu g/mL) whereas increasing concentrations of 22:6n-3 (40 and 80 mu g/mL) inhibited its metabolism. Stearic acid formation (18:0) from 18:2n-6 by B. proteoclasticus P18 was retarded, but not completely inhibited, in the presence of 22:6n-3 and this effect was dependent on 22:6n-3 concentration. Conclusions: For the first time, our study identified ruminal bacteria with the ability to hydrogenate 22:6n-3. The gradual appearance of intermediates indicates that biohydrogenation of 22:6n-3 by B. proteoclasticus P18 occurs by pathways of isomerization and hydrogenation resulting in a variety of unsaturated 22 carbon fatty acids. During the simultaneous presence of 18:2n-6 and 22:6n-3, B. proteoclasticus P18 initiated 22:6n-3 metabolism before converting 18:1 isomers into 18:0
    corecore