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Quantization Loss for Convolutional Decoding in
Rayleigh-Fading Channels

M. R. G. Butler, Member, IEEE,and A. R. Nix

Abstract—This letter presents a theoretical analysis (based
on tight upper bounds on the error probability) of quantization
loss with integer metrics used for convolutional decoding in the
Rayleigh-fading channel. Optimum configurations with respect to
the generalized cutoff rate criterion are established for 2-bit, 3-bit
and 4-bit quantizers, and corresponding losses with both de facto
industry-standard 1/2-rate and associated punctured 3/4-rate
codes are evaluated. Assuming optimized thresholds, 4-bit metrics
are shown to incur only a small quantization loss. However, results
also indicate that the loss is sensitive to suboptimum threshold
spacing.

Index Terms—Convolutional codes, integer metrics, quantiza-
tion, Rayleigh-fading channels.

I. INTRODUCTION

PRACTICAL convolutional decoding hardware demands
that input metrics are quantized to a limited set of integer

values. Without careful configuration, this can lead to a sig-
nificant quantization loss, or increase in the signal-to-noise
ratio (SNR) required to achieve a particular decoded error
probability [1]. For convolutional codes, the generalized cutoff
rate (GCR) is a reasonable criterion for quantizer design;
Binshtok and Shamai (Shitz) [2] have reported analysis of
optimum quantizers for the Rayleigh-fading channel in terms
of the GCR and have evaluated the difference in achievable
rates between decoding with continuous and quantized metrics.
This letter seeks to address the lack of published literature
containing evaluation of expected quantization losses in terms
of error probability for the fading channel case.

In Section II a model of an antipodal system in a flat
Rayleigh-fading channel is defined. Based on the GCR crite-
rion, optimum quantizer spacings are established in Section III.
Section IV then plots upper union bounds on the decoded bit
error probability; these allow the theoretical loss associated
with the optimized quantizer configurations to be estimated
and provide useful indications of the impact of suboptimum
quantization.

II. SYSTEM MODEL

The system model is illustrated in Fig. 1. The input is
a random binary vector, , from which the rate- convo-
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Fig. 1. System model.

lutional encoder produces the binary codeword,, with
elements . In this letter, we consider the defacto
industry-standard 1/2-rate code with constraint length 7 and
generator polynomials , and the 3/4-rate code
formed by puncturing this code as in [3]. For each codeword
element, the mapper produces a nonreturn-to-zero (NRZ) mod-
ulation symbol . The elements of the received
vector, , are given by where is a vector of
i.i.d. Rayleigh distributed variables and is a vector of i.i.d.
zero-mean Gaussian variables with variance. It is assumed
that and that where is the SNR.

With channel state information (CSI) available at the receiver,
the soft-decision demapper produces optimum maximum-like-
lihood (ML) decoder inputs, , where . The quan-
tizer converts this sequence to integer metric increments,.
Adopting the notation of [4], the output from a-bit uniform
quantizer, having regions with spacing is

for (1)

where the thresholds are

for
for
for .

(2)

The ML decoder, which is typically implemented using the
Viterbi algorithm, searches the code trellis to find the candidate
codeword, or path, with maximum associated metric; this forms
the estimate of the original data,. Quantized metrics, ,
for each trellis branch are

for
for

(3)

where is the branch label, or candidate codeword element.
These metrics are consistent with those outlined by Heller and
Jacobs [5] and with many commercially available Viterbi de-
coder integrated circuits. Without quantization of the decoder
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inputs the continuous branch metrics, , have an alternative
form

(4)

where, as previously, denotes a NRZ representation.

III. OPTIMUM QUANTIZER SPACING

We base quantizer design on the GCR of the discrete mem-
oryless channel between the codeword,, and the quantized
metric increments, . Note that with respect to the GCR, uni-
formly spaced quantizers, as considered here, are optimum in
the fading channel [2]. Following [6, p. 197], for binary modu-
lation the GCR is

(5)

For the quantized metrics, , we have

(6)

The crossover probabilities in terms of the SNR, ,
and the quantizer threshold spacing, , can then be deter-
mined from

(7)

where, for the system model considered here, the conditional
cumulative density function of the decoder inputs,is given in
[7] as

for

for
(8)

where . Using a numerical search based on these
expressions, the threshold spacings which maximizehave
been obtained over a range of for 2-bit, 3-bit, and 4-bit quan-
tizers. These are shown in Table I.

IV. UPPERBOUNDS ONERRORPROBABILITY

The upper union bound on the bit error probability allows the-
oretical evaluation of the error performance of a coded commu-
nication system. For a rate convolutional code, this is

(9)

where and are the free distance and the total number of
information bits in error for all error events with starting point
at distance , respectively (which are well known for the codes
considered here), and is the pairwise error probability. It has
been shown that this bound is tight for smaller than around

with Rayleigh channel fading [8].
For continuous decoder metrics, , is the probability

of error for binary phase shift keying in the Rayleigh-fading
channel with perfect CSI, maximal ratio combining andth
order diversity. This is given by Proakis [9, p. 723]. For quan-

TABLE I
QUANTIZER SPACING, �T , WHICH MAXIMIZES THE GENERALIZED

CUTOFF RATE, R , OVER A RANGE OF SNR,hi; 2-BIT (Q = 4),
3-BIT (Q = 8) AND 4-BIT (Q = 16) METRICS

Fig. 2. Upper union bounds on bit error probability,P , versus SNR,hi, with
1/2-rate and 3/4-rate codes based on the quantizer spacings,�T , in Table I;
continuous (Q = 1), 1-bit (Q = 2), 2-bit (Q = 4), 3-bit (Q = 8), and 4-bit
(Q = 16) metrics.

tized metrics, , Yasudaet al.provide a method for calculating
as a function of [10]. This crossover probability

is defined by (7). As with in the previous section, the bound
on can, therefore, be evaluated analytically for any given
and . Yasuda’s method involves determining, for every dis-
tance in (9), all possible combinations of integers that satisfy a
pair of nontrivial conditions; for greater than 4-bit quantization
it is prohibitively difficult to compute.

Assuming the quantizer spacings given in Table I and using
Yasuda’s procedure for computing , the bound on in (9)
has been evaluated over a range ofwith 2-bit, 3-bit and 4-bit
metrics, and with both 1/2-rate and 3/4-rate codes. These results,
along with the corresponding bounds assuming both 1-bit (for
which , and ) and continuous
metrics, are plotted in Fig. 2.

From this figure,assuming optimized quantizer thresholds,
the losses relative to the continuous case for 2-bit, 3-bit, and
4-bit quantization are 1.78, 0.52, and 0.18 dB, respectively, with
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Fig. 3. Upper union bounds on bit error probability,P , versus quantizer
spacing,�T , with 1/2-rate and 3/4-rate codes at SNR,hi = 6 dB and
hi = 12 dB, respectively; 2-bit (Q = 4), 3-bit (Q = 8), and 4-bit (Q = 16)
metrics.

the 1/2-rate code, and 2.19, 0.55, and 0.18 dB with the 3/4-rate
code. These losses are measured at , but remain ap-
proximately constant across the range ofplotted. For com-
parison, the use of 4-bit quantization in the Rayleigh-fading
channel incurs a similar loss to 3-bit quantization in the AWGN
channel (i.e., dB [1]). The results of Fig. 2 also indicate
the importance of using soft-decision, as opposed to hard-deci-
sion, decoding in the fading channel; 1-bit quantization incur-
ring a loss of 7.73 dB with the 1/2-rate code and 11.43 dB with
the 3/4-rate code. The increased losses with the 3/4-rate code
are reflective of the lower , or reduced diversity gain, associ-
ated with the higher coding rate.

Fig. 3 plots the union bound of (9), again based on Yasuda’s
expression for , as a function of quantizer spacing with 2-bit,
3-bit, and 4-bit metrics; results for 1/2-rate and 3/4-rate codes
are plotted at SNRs of 6 and 12 dB, respectively. Note that al-
though the optimized quantizer spacings in Table I (based on the
GCR) do not correspond exactly to the values of that pro-
vide minimum in Fig. 3 (based on the pairwise error proba-
bility), the disagreement is small. This highlights the value of the
GCR criterion: exact error bounds such as those in Fig. 3 are dif-
ficult to compute whereas based on the GCR, near-optimal (with
respect to ) quantizer designs can be straightforwardly devel-
oped in terms of the crossover probabilities , which
are dependent on the nature of the modulator, channel and de-
modulator rather than on the specific characteristics of the code
employed.

The results of Fig. 3 also draw attention to the sensitivity of
(and hence the quantization loss) to suboptimum quantizer

design. This has important practical implications. Firstly, it im-
plies that accurate Automatic Gain Control (AGC) is necessary
in the receiver to ensure that the quantizer thresholds are ap-
propriately positioned with respect to the continuous soft-de-
cision metrics (here, quantizer design is based on the fact that

). Furthermore, it suggests that since, according
to Table I, the optimum quantizer spacing varies significantly
with SNR, fixed-level quantization is unlikely to yield good per-
formance; instead the threshold spacing should be optimized
according to the operating SNR of the receiver. In relation to
this point, it is interesting to note from Table I the optimum

varies less with as increases. This indicates that uti-
lizing more quantization levels not only provides (if the op-
timum spacing can be accurately established) lower decoded
error probability, but also yields (if nonoptimum fixed levels are
employed) a quantizer that is more robust across a range of op-
erating SNRs.

V. CONCLUSIONS

Through the analysis of upper bounds on the decoded bit error
probability, 4-bit quantization with optimized thresholds has
been shown to provide a loss of only 0.18 dB when integer met-
rics are used for convolutional decoding in the Rayleigh-fading
channel. Results have also been presented which indicate that
the error probability is sensitive to the use of suboptimum quan-
tization.
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