15 research outputs found

    Effects of zinc precursor, basicity and temperature on the aqueous synthesis of ZnO nanocrystals

    Get PDF
    The effects of the zinc salt precursors, the reaction temperature and the alkaline ratio b (b = [OH-]/[Zn2+]) on the aqueous synthesis of ZnO nanocrystals were investigated. Depending on the type of the zinc precursor, Zn5(OH)8Cl2·H2O or Zn5(OH)8(NO3)2.2H2O lamellar phases were obtained at room temperature (20°C) when the alkaline ratio is lower (0.5 ≤ b ≤ 1, 6 ≤ pH ≤ 6.4). When the reaction temperature increased to 95 °C, zinc hydroxide chloride monohydrate was obtained in one case whereas zinc oxide was formed in the other, and no lamellar phase of Zn5(OH)8(NO3)2.2H2O was obtained. Thermal decomposition of the two lamellar phases was carried out and mainly showed that Zn5(OH)8(NO3)2.2H2O was completely decomposed to ZnO when the annealed temperature reached ~250 °C while Zn5(OH)8Cl2·H2O was totally transformed to ZnO at about 400 °C, a higher comparative temperature that confirms the better thermal stability of the zinc hydroxide chloride monohydrate.Keywords: Oxides, ZnO, chemical synthesis, X-ray diffraction, crystal structure, luminescenc

    New methods for the synthesis in aqueous medium of ternary AgInS₂ (AIS) and quaternary AgInS₂ / ZnS (AIZS) quantum dots. Doping of these nanocrystals with Ni²⁺ or Co²⁺. Application to heterogeneous photocatalysis

    No full text
    Les quantum dots (QDs) ont un fort potentiel pour la détection biologique, le photovoltaïque et la catalyse en raison de leurs propriétés photophysiques uniques. Les semiconducteurs les plus étudiés contiennent des métaux lourds comme le cadmium et le plomb et leurs domaines d’applications sont très limités. Dans le cadre de cette thèse, nous avons développé de nouveaux procédés de synthèse en milieu aqueux des QDs ternaires AgInSAgInS₂ et quaternaires AgInS₂/ZnS et avons étudié leur dopage par les cations Ni²⁺ et Co²⁺ afin de préparer des nanocristaux dotés de propriétés fluorescentes et magnétiques. Nous avons tout d’abord optimisé la synthèse des QDs AIZS en milieu aqueux en utilisant le 3-MPA comme ligand et avons produit des nanocristaux avec un rendement quantique de fluorescence de 65%. Puis, le dopage de ces nanocristaux par les cations Ni(+2) et Co(+2) a été étudié. Une chute du rendement quantique de fluorescence est observée après le dopage. Les meilleures propriétés magnétiques ont été observées à basse température (10 K) et les valeurs d'aimantation augmentent avec la concentration en dopant. Les QDs AIZS ont été associés aux nanotiges ZnO par hétérojonction pour former un bon photocatalyseur ZnO/AIZS(10%) qui dégrade 98% de l’Orange II en visible dans 90min sous intensité 40W/cm². Ce matériau est recyclable, vu que son activité photocatalytique ne baisse que légèrement après 8 cycles (91% de photodégradation).Quantum dots (QDs) have high potential for biological detection, photovoltaics and catalysis due to their unique photophysical properties. The most studied semiconductors contain heavy metals such as cadmium and lead and their fields of application are very limited. As part of this thesis, we developed new aqueous synthesis processes for ternary QDs AgInS₂ and quaternary AgInS₂/ZnS and studied their doping by the Ni(+2) and Co(+2) cations to prepare nanocrystals with fluorescent and magnetic properties. We first optimized the synthesis of AIZS QDs in aqueous media using 3-MPA as ligand and produced nanocrystals with a fluorescence quantum yield of 65%. Then, the doping of these nanocrystals by cations Ni(2+) and Co(2+) was studied. A drop in quantum fluorescence efficiency is observed after doping. The best magnetic properties were observed at low temperature (10 K) and the magnetization values increase with the dopant concentration. The AIZS QDs have been associated with the ZnO nanorods by heterojunction to form a good photocatalyst ZnO/AIZS(10%) which degrades 98% of the Orange II in visible during 90 min under intensity 40 W/cm². This material can be reused, its photocatalytic activity only slightly decreases after 8 cycles (91% photodegradation)

    Nouveaux procédés de synthèse en milieu aqueux de quantum dots ternaires AgInS₂ (AIS) et quaternaires AgInS₂/ZnS (AIZS). Dopage de ces nanocristaux par Ni²⁺ ou Co²⁺. Application à la photocatalyse hétérogène

    No full text
    Quantum dots (QDs) have high potential for biological detection, photovoltaics and catalysis due to their unique photophysical properties. The most studied semiconductors contain heavy metals such as cadmium and lead and their fields of application are very limited. As part of this thesis, we developed new aqueous synthesis processes for ternary QDs AgInS₂ and quaternary AgInS₂/ZnS and studied their doping by the Ni(+2) and Co(+2) cations to prepare nanocrystals with fluorescent and magnetic properties. We first optimized the synthesis of AIZS QDs in aqueous media using 3-MPA as ligand and produced nanocrystals with a fluorescence quantum yield of 65%. Then, the doping of these nanocrystals by cations Ni(2+) and Co(2+) was studied. A drop in quantum fluorescence efficiency is observed after doping. The best magnetic properties were observed at low temperature (10 K) and the magnetization values increase with the dopant concentration. The AIZS QDs have been associated with the ZnO nanorods by heterojunction to form a good photocatalyst ZnO/AIZS(10%) which degrades 98% of the Orange II in visible during 90 min under intensity 40 W/cm². This material can be reused, its photocatalytic activity only slightly decreases after 8 cycles (91% photodegradation).Les quantum dots (QDs) ont un fort potentiel pour la détection biologique, le photovoltaïque et la catalyse en raison de leurs propriétés photophysiques uniques. Les semiconducteurs les plus étudiés contiennent des métaux lourds comme le cadmium et le plomb et leurs domaines d’applications sont très limités. Dans le cadre de cette thèse, nous avons développé de nouveaux procédés de synthèse en milieu aqueux des QDs ternaires AgInSAgInS₂ et quaternaires AgInS₂/ZnS et avons étudié leur dopage par les cations Ni²⁺ et Co²⁺ afin de préparer des nanocristaux dotés de propriétés fluorescentes et magnétiques. Nous avons tout d’abord optimisé la synthèse des QDs AIZS en milieu aqueux en utilisant le 3-MPA comme ligand et avons produit des nanocristaux avec un rendement quantique de fluorescence de 65%. Puis, le dopage de ces nanocristaux par les cations Ni(+2) et Co(+2) a été étudié. Une chute du rendement quantique de fluorescence est observée après le dopage. Les meilleures propriétés magnétiques ont été observées à basse température (10 K) et les valeurs d'aimantation augmentent avec la concentration en dopant. Les QDs AIZS ont été associés aux nanotiges ZnO par hétérojonction pour former un bon photocatalyseur ZnO/AIZS(10%) qui dégrade 98% de l’Orange II en visible dans 90min sous intensité 40W/cm². Ce matériau est recyclable, vu que son activité photocatalytique ne baisse que légèrement après 8 cycles (91% de photodégradation)

    Aqueous synthesis of highly fluorescent and color-tunable Ag + -doped Cd x Zn 1-x S quantum dots

    No full text
    International audienceFacile and low cost syntheses of 3-mercaptopropionic acid-capped Ag:CdxZn1-xS and of core/shell Ag:CdxZn1-xS/ZnS quantum dots (QDs) are presented. The effects of the Ag+ doping concentration and of the Cd/Zn ratio on the structural and optical properties of the dots were investigated. Core Ag:CdxZn1-xS QDs have an average diameter of ca. 4.5 nm and their photoluminescence (PL) emission can be tuned from 478 to 610 nm by varying the dopant concentration or the composition of the CdxZn1-xS host material. The highest PL quantum yield (25%) is obtained when using 2 or 3.5% doping in Ag+. The PL quantum yield increased substantially (44%) after capping the Ag:CdxZn1-xS core with a ZnS shell. Due to their high photostability and long excited-state lifetimes (1–2 μs), Ag:CdxZn1-xS QDs are of high potential as nanophosphors or as fluorescent probes for bio-imaging

    Heterostructured Photocatalysts Associating ZnO Nanorods and Ag-In-Zn-S Quantum Dots for the Visible Light-Driven Photocatalytic Degradation of the Acid Orange 7 Dye

    No full text
    Heterostructured photocatalysts associating ZnO nanorods (NRs) sensitized by quaternary Ag-In-Zn-S (AIZS) quantum dots (QDs) were prepared by depositing AIZS QDs at the surface of ZnO NRs followed by thermal treatment at 300 °C. The ZnO/AIZS catalysts were characterized by X-ray diffraction, electron microscopy, UV-vis diffuse spectroscopy and by photoelectrochemical measurements. Their photocatalytic activity was evaluated for the bleaching of the Acid Orange 7 (AO7) dye under visible light irradiation. Results show that the association of ZnO NRs with 10 wt% AIZS QDs affords the photocatalyst the highest activity due to the enhanced visible light absorption combined with the improved charge separation. The ZnO/AIZS(10) photocatalyst degrades 98% AO7 in 90 min under visible light illumination, while ZnO NRs can only decompose 11% of the dye. The ZnO/AIZS(10) photocatalyst was also found to be stable and can be reused up to eight times without significant alteration of its activity. This work demonstrates the high potential of AIZS QDs for the development of visible light active photocatalysts

    Overexpression of Annexin A1 Is an Independent Predictor of Longer Overall Survival in Epithelial Ovarian Cancer

    No full text
    International audienceBackground: Epithelial ovarian cancer (EOC) is the major gynecological cause of cancer deaths. Annexin A1 (ANXA1) protein has been implicated in the aggressiveness of several cancer types.Materials and methods: This study retrospectively assessed ANXA1 expression in epithelial cells of 156 pre-chemotherapy EOC samples and 34 normal ovarian samples from patients treated at Salah Azaiez Institute. Using immunohistochemistry, ANXA1 expression was compared in normal versus cancer samples; correlations with clinicopathological features, including overall survival, were sought.Results: Fifty-two percent of tumor samples showed epithelial ANXA1 staining versus only 26% of normal samples (Fisher's exact test, p=0.00794). Epithelial ANXA1 expression was correlated with better overall survival in both univariate and multivariate analyses.Conclusion: The possible contribution of ANXA1 overexpression to EOC outcome may be relevant to therapeutic strategies

    Stromal Expression of MARCKS Protein in Ovarian Carcinomas Has Unfavorable Prognostic Value

    Get PDF
    International audienceEpithelial ovarian cancer (EOC) is the most lethal gynecological cancer. Identification of new therapeutic targets is crucial. MARCKS, myristoylated alanine-rich C-kinase substrate, has been implicated in aggressiveness of several cancers and MARCKS inhibitors are in development. Using immunohistochemistry (IHC), we retrospectively assessed MARCKS expression in epithelial and stromal cells of 118 pre-chemotherapy EOC samples and 40 normal ovarian samples from patients treated at Salah Azaiez Institute. We compared MARCKS expression in normal versus cancer samples, and searched for correlations with clinicopathological features, including overall survival (OS). Seventy-five percent of normal samples showed positive epithelial MARCKS staining versus 50% of tumor samples (p = 6.02 x 10(-3)). By contrast, stromal MARCKS expression was more frequent in tumor samples (77%) than in normal samples (22%; p = 1.41 x 10(-9)). There was no correlation between epithelial and stromal IHC MARCKS statutes and prognostic clinicopathological features. Stromal MARCKS expression was correlated with shorter poor OS in uni- and multivariate analyses. Stromal MARCKS overexpression in tumors might contribute to cancer-associated fibroblasts activation and to the poor prognosis of EOC, suggesting a potential therapeutic interest of MARCKS inhibition for targeting the cooperative tumor stroma

    Stromal Expression of MARCKS Protein in Ovarian Carcinomas Has Unfavorable Prognostic Value

    Get PDF
    Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. Identification of new therapeutic targets is crucial. MARCKS, myristoylated alanine-rich C-kinase substrate, has been implicated in aggressiveness of several cancers and MARCKS inhibitors are in development. Using immunohistochemistry (IHC), we retrospectively assessed MARCKS expression in epithelial and stromal cells of 118 pre-chemotherapy EOC samples and 40 normal ovarian samples from patients treated at Salah Azaiez Institute. We compared MARCKS expression in normal versus cancer samples, and searched for correlations with clinicopathological features, including overall survival (OS). Seventy-five percent of normal samples showed positive epithelial MARCKS staining versus 50% of tumor samples (p = 6.02 × 10−3). By contrast, stromal MARCKS expression was more frequent in tumor samples (77%) than in normal samples (22%; p = 1.41 × 10−9). There was no correlation between epithelial and stromal IHC MARCKS statutes and prognostic clinicopathological features. Stromal MARCKS expression was correlated with shorter poor OS in uni- and multivariate analyses. Stromal MARCKS overexpression in tumors might contribute to cancer-associated fibroblasts activation and to the poor prognosis of EOC, suggesting a potential therapeutic interest of MARCKS inhibition for targeting the cooperative tumor stroma

    VISTA+/CD8+ status correlates with favorable prognosis in Epithelial ovarian cancer

    No full text
    Immunotherapy by blocking immune checkpoint regulators has emerged as a new targeted therapy for some cancers. Among them V-domain Ig suppressor of Tcell activation (VISTA) which is identified as a novel checkpoint regulator in ovarian cancer. This study aimed to investigate the VISTA role in Epithelial ovarian cancer (EOC), and its relationship with tumor-infiltrating lymphocytes (TILs) markers and its prognostic value. The expression of VISTA, CD3, CD8, CD4, FOXP3, and CD56 was assessed in 168 EOC tissue microarrays (TMA) by immunohistochemistry (IHC). In addition, associations between VISTA, TILs, clinicopathological variables, and overall survival (OS) were analyzed. VISTA expression in IGRov1 cells, as well as in PBMC of EOC patient, was evaluated by western blot. VISTA expression was detected in 64,28% of tissues, among which 42.3% were positive for tumor cells (TCs), and 47,9% were positive for immune cells (ICs). In univariate analysis, VISTA expression was significantly associated with a high density of TILs:CD3+ (p = 0,001), CD4+ (p = 0,002) and CD8+ (p≤0,001), in ICs but not in TCs. In terms of OS, multivariate analysis showed a significant association between the high density of CD8+ TILs and VISTA positive staining in ICs (p = 0,044), but not in TCs (p = 0,108). Kaplan-Meier curves demonstrated no correlation between VISTA expression and prolonged OS in both ICs (p = 0,841) and TCs (p = 0,090). Classification of EOC tumor microenvironment based on VISTA and CD8+TILs expression, demonstrated four immune subtypes: VISTA+/CD8+, VISTA+/CD8-, VISTA-/CD8+ and VISTA-/CD8-. The dual positive VISTA+/CD8+ subtype was significantly associated with prolonged OS in both TCs and ICs (p = 0,012 and p≤0,01, respectively), whereas patients with VISTA+/CD8- had the worst OS. Our results showed that VISTA is highly expressed in the IGRov1 cell line and LT-CD8 from a patient with EOC. Our results highlighted the association of VISTA expression and CD8+ TILs in EOC, with prolonged OS in patients with VISTA+/CD8+ and proposed VISTA as a potential immunotherapeutic target in EOC

    VISTA+/CD8+ status correlates with favorable prognosis in Epithelial ovarian cancer.

    No full text
    Immunotherapy by blocking immune checkpoint regulators has emerged as a new targeted therapy for some cancers. Among them V-domain Ig suppressor of Tcell activation (VISTA) which is identified as a novel checkpoint regulator in ovarian cancer. This study aimed to investigate the VISTA role in Epithelial ovarian cancer (EOC), and its relationship with tumor-infiltrating lymphocytes (TILs) markers and its prognostic value. The expression of VISTA, CD3, CD8, CD4, FOXP3, and CD56 was assessed in 168 EOC tissue microarrays (TMA) by immunohistochemistry (IHC). In addition, associations between VISTA, TILs, clinicopathological variables, and overall survival (OS) were analyzed. VISTA expression in IGRov1 cells, as well as in PBMC of EOC patient, was evaluated by western blot. VISTA expression was detected in 64,28% of tissues, among which 42.3% were positive for tumor cells (TCs), and 47,9% were positive for immune cells (ICs). In univariate analysis, VISTA expression was significantly associated with a high density of TILs:CD3+ (p = 0,001), CD4+ (p = 0,002) and CD8+ (p≤0,001), in ICs but not in TCs. In terms of OS, multivariate analysis showed a significant association between the high density of CD8+ TILs and VISTA positive staining in ICs (p = 0,044), but not in TCs (p = 0,108). Kaplan-Meier curves demonstrated no correlation between VISTA expression and prolonged OS in both ICs (p = 0,841) and TCs (p = 0,090). Classification of EOC tumor microenvironment based on VISTA and CD8+TILs expression, demonstrated four immune subtypes: VISTA+/CD8+, VISTA+/CD8-, VISTA-/CD8+ and VISTA-/CD8-. The dual positive VISTA+/CD8+ subtype was significantly associated with prolonged OS in both TCs and ICs (p = 0,012 and p≤0,01, respectively), whereas patients with VISTA+/CD8- had the worst OS. Our results showed that VISTA is highly expressed in the IGRov1 cell line and LT-CD8 from a patient with EOC. Our results highlighted the association of VISTA expression and CD8+ TILs in EOC, with prolonged OS in patients with VISTA+/CD8+ and proposed VISTA as a potential immunotherapeutic target in EOC
    corecore