180 research outputs found

    Effect of pH and Monovalent Cations on the Formation of Quinonoid Intermediates of the Tryptophan Synthase α2β2 Complex in Solution and in the Crystal

    Get PDF
    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate-dependent enzymes. Whereas the structures of other pyridoxal 5'-phosphate-bound intermediates have been determined, the structure of a quinonoid species has not yet been reported. Here, we investigate factors controlling the accumulation and stability of quinonoids formed at the beta-active site of tryptophan synthase both in solution and the crystal. The quinonoids were obtained by reacting the alpha-aminoacrylate Schiff base with different nucleophiles, focusing mainly on the substrate analogs indoline and beta-mercaptoethanol. In solution, both monovalent cations (Cs(+) or Na(+)) and alkaline pH increase the apparent affinity of indoline and favor accumulation of the indoline quinonoid. A similar pH dependence is observed when beta-mercaptoethanol is used. As indoline and beta-mercaptoethanol exhibit very distinct ionization properties, this finding suggests that nucleophile binding and quinonoid stability are controlled by some ionizable protein residue(s). In the crystal, alkaline pH favors formation of the indoline quinonoid as in solution, but the effect of cations is markedly different. In the absence of monovalent metal ions the quinonoid species accumulates substantially, whereas in the presence of sodium ions the accumulation is modest, unless alpha-subunit ligands are also present. Alpha-subunit ligands not only favor the formation of the intermediate, but also reduce significantly its decay rate. These findings define experimental conditions suitable for the stabilization of the quinonoid species in the crystal, a critical prerequisite for the determination of the three-dimensional structure of this intermediate

    Surface-exposed Tryptophan Residues Are Essential for O-Acetylserine Sulfhydrylase Structure, Function, and Stability

    Get PDF
    O-Acetylserine sulfhydrylase is a homodimeric enzyme catalyzing the last step of cysteine biosynthesis via a Bi Bi ping-pong mechanism. The subunit is composed of two domains, each containing one tryptophan residue, Trp50 in the N-terminal domain and Trp161 in the C-terminal domain. Only Trp161 is highly conserved in eucaryotes and bacteria. The coenzyme pyridoxal 5'-phosphate is bound in a cleft between the two domains. The enzyme undergoes an open to closed conformational transition upon substrate binding. The effect of single Trp to Tyr mutations on O-acetylserine sulfhydrylase structure, function, and stability was investigated with a variety of spectroscopic techniques. The mutations do not significantly alter the enzyme secondary structure but affect the catalysis, with a predominant influence on the second half reaction. The W50Y mutation strongly affects the unfolding pathway due to the destabilization of the intersubunit interface. The W161Y mutation, occurring in the C-terminal domain, produces a reduction of the accessibility of the active site to acrylamide and stabilizes thermodynamically the N-terminal domain, a result consistent with stronger interdomain interactions

    Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study

    Full text link
    Hemoglobin exhibits allosteric structural changes upon ligand binding due to the dynamic interactions between the ligand binding sites, the amino acids residues and some other solutes present under physiological conditions. In the present study, the dynamical and quaternary structural changes occurring in two unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures of adult human hemoglobin were investigated with molecular dynamics. It is shown that, in the sub-microsecond time scale, there is no marked difference in the global dynamics of the amino acids residues in both the oxy- and the deoxy- forms of the individual structures. In addition, the R, R2 are relatively stable and do not present quaternary conformational changes within the time scale of our simulations while the T structure is dynamically more flexible and exhibited the T\rightarrow R quaternary conformational transition, which is propagated by the relative rotation of the residues at the {\alpha}1{\beta}2 and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ

    L-serine biosynthesis in the human central nervous system: Structure and function of phosphoserine aminotransferase

    Get PDF
    Organisms from all kingdoms of life synthesize L-serine (L-Ser) from 3-phosphoglycerate through the phosphorylated pathway, a three-step diversion of glycolysis. Phosphoserine aminotransferase (PSAT) catalyzes the intermediate step, the pyridoxal 5′-phosphate-dependent transamination of 3-phosphohydroxypyruvate and L-glutamate to O-phosphoserine (OPS) and α-ketoglutarate. PSAT is particularly relevant in the central nervous system of mammals because L-Ser is the metabolic precursor of D-serine, cysteine, phospholipids, and nucleotides. Several mutations in the human psat gene have been linked to serine deficiency disorders, characterized by severe neurological symptoms. Furthermore, PSAT is overexpressed in many tumors and this overexpression has been associated with poor clinical outcomes. Here, we report the detailed functional and structural characterization of the recombinant human PSAT. The reaction catalyzed by PSAT is reversible, with an equilibrium constant of about 10, and the enzyme is very efficient, with a kcat/Km of 5.9 Ã— 106 M−1 s−1, thus contributing in driving the pathway towards the products despite the extremely unfavorable first step catalyzed by 3-phosphoglycerate dehydrogenase. The 3D X-ray crystal structure of PSAT was solved in the substrate-free as well as in the OPS-bound forms. Both structures contain eight protein molecules in the asymmetric unit, arranged in four dimers, with a bound cofactor in each subunit. In the substrate-free form, the active site of PSAT contains a sulfate ion that, in the substrate-bound form, is replaced by the phosphate group of OPS. Interestingly, fast crystal soaking used to produce the substrate-bound form allowed the trapping of different intermediates along the catalytic cycle

    High- and low-affinity PEGylated hemoglobin-based oxygen carriers: differential oxidative stress in a Guinea pig transfusion model

    Get PDF
    Hemoglobin (Hb)-based oxygen carriers (HBOCs) are an investigational replacement for blood transfusions and are known to cause oxidative damage to tissues. To investigate the correlation between their oxygen binding properties and these detrimental effects, we investigated two PEGylated HBOCs endowed with different oxygen binding properties - but otherwise chemically identical - in a Guinea pig transfusion model. Plasma samples were analyzed for biochemical markers of inflammation, tissue damage and organ dysfunction; proteins and lipids of heart and kidney extracts were analyzed for markers of oxidative damage. Overall, both HBOCs produced higher oxidative stress in comparison to an auto-transfusion control group. Particularly, tissue 4-hydroxynonenal-adducts, tissue malondialdehyde adducts and plasma 8-oxo-2'-deoxyguanosine exhibited significantly higher levels in comparison with the control group. For malondialdehyde adducts, a higher level in the renal tissue was observed for animals treated with PEG-Hboxy, hinting at a correlation between the HBOCs oxygen binding properties and the oxidative stress they produce. Moreover, we found that the high-affinity HBOC produced greater tissue oxygenation in comparison with the low affinity one, possibly correlating with the higher oxidative stress it induced

    CO rebinding kinetics and molecular dynamics simulations highlight dynamic regulation of internal cavities in human cytoglobin

    Get PDF
    Cytoglobin (Cygb) was recently discovered in the human genome and localized in different tissues. It was suggested to play tissue-specific protective roles, spanning from scavenging of reactive oxygen species in neurons to supplying oxygen to enzymes in fibroblasts. To shed light on the functioning of such versatile machinery, we have studied the processes supporting transport of gaseous heme ligands in Cygb. Carbon monoxide rebinding shows a complex kinetic pattern with several distinct reaction intermediates, reflecting rebinding from temporary docking sites, second order recombination, and formation (and dissociation) of a bis-histidyl heme hexacoordinated reaction intermediate. Ligand exit to the solvent occurs through distinct pathways, some of which exploit temporary docking sites. The remarkable change in energetic barriers, linked to heme bis-histidyl hexacoordination by HisE7, may be responsible for active regulation of the flux of reactants and products to and from the reaction site on the distal side of the heme. A substantial change in both protein dynamics and inner cavities is observed upon transition from the CO-liganded to the pentacoordinated and bis-histidyl hexacoordinated species, which could be exploited as a signalling state. These findings are consistent with the expected versatility of the molecular activity of this protein

    Rational design of a user-friendly aptamer/peptide-based device for the detection of staphylococcus aureus

    Get PDF
    The urgent need to develop a detection system for Staphylococcus aureus, one of the most common causes of infection, is prompting research towards novel approaches and devices, with a particular focus on point-of-care analysis. Biosensors are promising systems to achieve this aim. We coupled the selectivity and affinity of aptamers, short nucleic acids sequences able to recognize specific epitopes on bacterial surface, immobilized at high density on a nanostructured zirconium dioxide surface, with the rational design of specifically interacting fluorescent peptides to assemble an easy-to-use detection device. We show that the displacement of fluorescent peptides upon the competitive binding of S. aureus to immobilized aptamers can be detected and quantified through fluorescence loss. This approach could be also applied to the detection of other bacterial species once aptamers interacting with specific antigens will be identified, allowing the development of a platform for easy detection of a pathogen without requiring access to a healthcare environment

    MediaChrom: exploring a new family of pyrimidoindolone-based polarity-sensitive dyes

    Get PDF
    The modern biological research asks for a continuous development of new fluorescent dyes characterized by improved performances and suitable to be used as markers or probes [1]. A particular class of dyes, called polarity-sensitive dyes have the unique features to display a different emission maximum as a function of the polarity of their molecular environment (media). This peculiarity makes polarity-sensitive dyes the ideal probes to monitor the local properties of particular cell districts as well as different type of biomolecular interactions [2]. Since many years, we have been interested in the development of new strategies for the synthesis and the functionalization of indoles and polycyclic indole-based heterocycles. In this context, we reported a domino approach to pyrimidoindolones [3] that displayed interesting fluorescence properties. Starting from these findings, a small library of original polarity-sensitive fluorescent dyes, nicknamed MediaChrom, has been prepared [4]. They are characterized by a pyrimidoindolone core fitted out with a conjugated push-pull system, and a linker for an easy coupling with biomolecules. The synthetic strategy involves a highly chemo- and regioselective gold catalyzed cycloisomerization as key step. The photophysical properties of MediaChrom dyes have been evaluated, and some potential biological applications have been spottily investigated. [1] Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006. [2] Klymchenko, A. S.; Mely, Y. In: Progress in Molecular Biology and Translational Science, Morris, M.C. Editor(s), Academic Press, 2013, Vol. 113, Cap. 2, 35. [3] Facoetti, D.; Abbiati, G.; d\u2019Avolio, L.; Ackermann, L.; Rossi, E. Synlett 2009, 2273. [4] Dell'Acqua, M.; Ronda, L.; Piano, R.; Pellegrino, S.; Clerici, F.; Rossi, E.; Mozzarelli, A.; Gelmi, M. L.; Abbiati, G. J. Org. Chem. 2015, 21, 10939. This work has been supported by Fondazione Cariplo, Grant No. 2012-0907

    VID22 counteracts G-quadruplex-induced genome instability

    Get PDF
    Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism
    • …
    corecore