4 research outputs found

    Amorçage de fissures de corrosion sous contrainte du Zircaloy-4 recristallisé en milieu méthanol iodé

    Get PDF
    En situation d’interaction pastille-gaine (IPG), les gaines de crayons combustible en alliage de zirconium sont susceptibles de rompre lors de transitoires de puissance incidentels dans les réacteurs à eau pressurisée, par un mécanisme de corrosion sous contrainte induite par l’iode (CSC-I). Cette étude traite de l’amorçage intergranulaire des fissures de CSC-I dans le Zircaloy-4 recristallisé, en milieu méthanol iodé à température ambiante, en s’intéressant particulièrement aux paramètres mécaniques critiques et à la concentration en iode. Pour cela, une approche mêlant expériences et simulations numériques a été adoptée. Un modèle de comportement mécanique macroscopique de l’alliage, viscoplastique et anisotrope, a été établi et validé sur une large gamme de sollicitations. Par la réalisation de nombreux essais de traction à vitesse de déformation imposée et de fluage en flexion quatre points, nous avons montré l’existence d’une concentration seuil I0 proche de 10-6 g.g-1 nécessaire à l’apparition du dommage de CSC-I, mais également celle d’une concentration de transition I1 proche de 2 10-4 g.g-1 au-delà de laquelle le mécanisme change, menant à un amorçage anticipé des fissures et une sensibilité réduite de l’endommagement aux paramètres mécaniques. L’importance de la concentration sur des paramètres tels que la densité des fissures, leur longueur moyenne et la vitesse de propagation intergranulaire et transgranulaire a été mise en évidence. Les résultats expérimentaux montrent que la déformation plastique macroscopique n’est pas indispensable à l’amorçage de fissures de CSC-I, pour un temps d’essais suffisamment long en présence de contrainte. Son principal effet est de précipiter l’apparition de fissures par la création de sites d’amorçage, par rupture de la couche d’oxyde et accumulation de contrainte intergranulaire. En dessous de I1 la détermination des déformations critiques à l’amorçage montre un fort effet de vitesse. Dans ce domaine, une contrainte seuil de 100 MPa a été déterminée, bien inférieure à la limite élastique. L’utilisation d’éprouvettes entaillées et de la simulation numérique a permis de mettre en évidence un fort effet protecteur de l’augmentation de la biaxialité des contraintes vis-à-vis de l’amorçage, dans le domaine élastique comme dans le domaine plastique. Des éprouvettes préalablement irradiées aux protons à une dose de 2 dpa ont été testées dans les mêmes conditions que les éprouvettes non irradiées. La sensibilité accrue du matériau irradié à la CSC-I a pu être quantifiée et nous avons constaté qu’un effet de concentration et un effet de vitesse de sollicitation subsistent après irradiation. L’irradiation induit une localisation plus importante de la déformation menant à un amorçage prématuré des fissures, mais une sensibilité chimique plus importante, tendance à la piquration et décalage de I1, apparaît comme le principal responsable de la plus forte sensibilité de l’irradié. ABSTRACT : During the pellet-cladding interaction, Zirconium-alloy fuel claddings might fail when subjected to incidental power transient in nuclear Pressurized Water Reactors, by Iodine-induced Stress Corrosion Cracking (I-SCC). This study deals with the intergranular initiation of I-SCC cracks in fully recrystallized Zircaloy-4, in methyl alcohol solution of iodine at room temperature, with the focus on critical mechanical parameters and iodine concentration. It was carried out with an approach mixing experiments and numerical simulations. An anisotropic and viscoplastic mechanical behavior model was established and validated over a wide range of loadings. With numerous constant elongation rate tensile tests and four points bending creep tests, the existence of a threshold iodine concentration I0 close to 10-6 g.g-1 was highlighted, necessary to the occurrence of I-SCC damage, along with a transition concentration I1 close to 2 10-4 g.g-1. Above I1 the mechanism changes, leading to a sped up crack initiation and a loss of sensitivity towards mechanical parameters. The importance of concentration on parameters such as crack density, crack average length and intergranular and transgranular crack velocities was evidenced. Experimental results show that plastic strain is not required for I-SCC crack initiation, if the test time is long enough in the presence of stress. Its main influence is to rush the occurrence of cracking by creating initiation sites, by way of breaking the oxide layer and building up intergranular stress. Below I1, the critical strains at initiation show a substantial strain rate sensitivity. In this domain, a threshold stress of 100 MPa was found, well below the yield stress. Thanks to the combined use of notched specimens and numerical simulations, a strong protective effect of an increasing stress biaxiality ratio was found, both in the elastic and plastic domains. Proton-irradiated samples, up to a dose of 2 dpa, were tested in the same conditions as fresh specimens. The higher I-SCC sensitivity of the irradiated material was measured and the effects of concentration and strain rate were found to remain. Irradiation leads to a higher strain localization causing early crack initiation, but the main reason for the higher sensitivity of the irradiated material seems to be a chemical one, with higher pitting occurrence and a shift of I1

    Mechanical behavior of recrystallized Zircaloy-4 under monotonic loading at room temperature: Tests and simplified anisotropic modeling

    Get PDF
    Mechanical behavior of recrystallized Zircaloy-4 was studied at room temperature in the rolling-transverse plane of a thin sheet. Uniaxial constant elongation rate tests (CERTs) were performed along with creep tests, over a wide range of strain rates. Based on a simplified formulation, different sets of parameters for an anisotropic viscoplastic model were found to fit the stress–strain curves. Notched specimen tensile tests were carried out with a digital image correlation (DIC) technique in order to determine the strain field evolution. From these measurements and the determination of Lankford coefficients, the most consistent model was selected and simulated data were successfully compared with the experimental observations

    Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    Get PDF
    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data

    Development and validation of a new experimental device for studies of iodine stress corrosion cracking of zirconium alloys

    No full text
    International audienceZirconium alloys are widely used in the nuclear industry as cladding material due to their good thermo-mechanical, chemical and neutronic properties as well as an excellent general corrosion resistance in many environments. Nonetheless, Iodine-induced Stress Corrosion Cracking (ISCC) is an identified failure mechanism that can occur in nuclear fuel cladding as a result of Pellet Cladding Interaction (PCI) during incidental power transients in the reactor. In this study a new experimental device allowing studies of ISCC in a controlled chemical environment is presented. The experiments are performed in an environment that is free of contaminants. First results show that the time to rupture of the specimen is inversely related to the iodine partial pressure. The lowest tested iodine partial pressure, 150 Pa, resulted in an ISCC crack. Post-Mortem microstructural observations provide evidence of iodine corrosion of Zircaloy-4
    corecore