4,623 research outputs found

    Direct Observation of Electron Distributions Inside Millisecond Duration Electron Holes

    Get PDF
    Despite the importance of millisecond duration spatial structures [chorus wave nonlinearity or time domain structures (TDS)] to plasma dynamics, there have been no direct observations of the generation and interaction of these waves and TDS with electrons at the millisecond timescale required for their understanding. Through superposition of 0.195 ms Magnetospheric Multiscale Satellite electron measurements inside 37 superposed, millisecond duration electron holes, the first observations of electron spectra and pitch angle distributions on a submillisecond timescale have been obtained. They show that keV electrons inside the superposed electron hole are accelerated by several hundred volts and that the spectrum of electrons inside the electron hole contain several maxima and minima that are explained by a model of electron energy changes on entering the holes. We report the first observation of trapped electrons inside the TDS, in accordance with the theoretical requirement that such electrons must be present in order to form the phase space holes. Mechanisms of electron acceleration by electron holes (through perpendicular energy gain as the TDS moves into a converging magnetic field) and scattering (due to the perpendicular electric field) are discussed

    A TREATMENT OF THE METALLIC IMPURITY PROBLEM USING GREEN'S FUNCTIONS

    Full text link

    Microsecond dye regeneration kinetics in efficient solid state dye-sensitized solar cells using a photoelectrochemically deposited PEDOT hole conductor

    Get PDF
    Microsecond dye-regeneration kinetics was observed in efficient solid state dye-sensitized solar cells using photoelectrochemically deposited poly(3,4-ethylenedioxythiophene (PEDOT) hole conductors using transient absorption spectroscopy. The dye-regeneration rate is orders of magnitude slower than the case using the I-/I3- redox couple or commonly used small molecule hole conductor and is attributed to the low dye to PEDOT ratio within the films

    Phonons in random alloys: the itinerant coherent-potential approximation

    Full text link
    We present the itinerant coherent-potential approximation(ICPA), an analytic, translationally invariant and tractable form of augmented-space-based, multiple-scattering theory in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni_{55} Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation(CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex

    Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators

    Get PDF
    Ferrocene compounds are promising redox shuttles for application in dye-sensitized solar cells (DSCs). Chemical modification of the cyclopentadienyl rings is easily achievable affording almost unlimited variation of the redox properties. This allows fine-tuning of the driving force for dye-regeneration and optimization of the energy conversion efficiency of DSCs. Herein, six ferrocene derivatives have been chosen for investigation which cover the large redox potential range of 0.85 V, by virtue of simple alkylation and halogenation of the cyclopentadienyl ring, and enable improved matching of the energy levels of the sensitizer and the electrolyte. Although the focus of this work was to examine the effect of the redox potential on charge transfer processes, DSCs were fabricated which achieved high energy conversion efficiencies of over 5%. Charge transfer reactions were studied to reveal the dependence of the dye regeneration rate, recombination losses and recombination pathways on the reaction driving force. An increase in redox potential led to a higher efficiency due to higher open circuit potentials until a threshold is reached. At this threshold, the driving force for dye regeneration (18 kJ DE Π0.19 V) becomes too small for efficient device operation, leading to rapid recombination between the oxidized dye and electrons in the TiO2 conduction band. As a result of this work guidelines can be formulated to aid the selection of redox couples for a particular sensitizer in order to maximize the utilization of incident solar energy

    Adaptive Forgetting Curves for Spaced Repetition Language Learning

    Get PDF
    The forgetting curve has been extensively explored by psychologists, educationalists and cognitive scientists alike. In the context of Intelligent Tutoring Systems, modelling the forgetting curve for each user and knowledge component (e.g. vocabulary word) should enable us to develop optimal revision strategies that counteract memory decay and ensure long-term retention. In this study we explore a variety of forgetting curve models incorporating psychological and linguistic features, and we use these models to predict the probability of word recall by learners of English as a second language. We evaluate the impact of the models and their features using data from an online vocabulary teaching platform and find that word complexity is a highly informative feature which may be successfully learned by a neural network model.Cambridge Assessmen

    Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission

    Get PDF
    We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000 km/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data

    MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line

    Get PDF
    © 2016. American Geophysical Union. All Rights Reserved.We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple crossings of a reconnecting magnetopause on 22 October 2015, when the average interspacecraft separation was ~10km, we demonstrate that the ion and electron moments are sufficiently accurate to provide reliable current density measurements at 30ms cadence. These measurements, which resolve current layers narrower than the interspacecraft separation, reveal electron-scale filamentary Hall currents and electron vorticity within the reconnection exhaust far downstream of the X line and even in the magnetosheath. Slightly downstream of the X line, intense (up to 3ÎŒA/m2) electron currents, a super-AlfvĂ©nic outflowing electron jet, and nongyrotropic crescent shape electron distributions were observed deep inside the ion-scale magnetopause current sheet and embedded in the ion diffusion region. These characteristics are similar to those attributed to the electron dissipation/diffusion region around the X line
    • 

    corecore