73 research outputs found

    Global change accelerates carbon assimilation by a wetland ecosystem engineer

    Get PDF
    The primary productivity of coastal wetlands is changing dramatically in response to rising atmospheric carbon dioxide (CO2) concentrations, nitrogen (N) enrichment, and invasions by novel species, potentially altering their ecosystem services and resilience to sea level rise. In order to determine how these interacting global change factors will affect coastal wetland productivity, we quantified growing-season carbon assimilation (≈gross primary productivity, or GPP) and carbon retained in living plant biomass (≈net primary productivity, or NPP) of North American mid-Atlantic saltmarshes invaded by Phragmites australis (common reed) under four treatment conditions: two levels of CO2 (ambient and +300 ppm) crossed with two levels of N (0 and 25 g N added m−2 yr−1). For GPP, we combined descriptions of canopy structure and leaf-level photosynthesis in a simulation model, using empirical data from an open-top chamber field study. Under ambient CO2 and low N loading (i.e., the Control), we determined GPP to be 1.66 ± 0.05 kg C m−2 yr−1 at a typical Phragmites stand density. Individually, elevated CO2 and N enrichment increased GPP by 44 and 60%, respectively. Changes under N enrichment came largely from stimulation to carbon assimilation early and late in the growing season, while changes from CO2 came from stimulation during the early and mid-growing season. In combination, elevated CO2 and N enrichment increased GPP by 95% over the Control, yielding 3.24 ± 0.08 kg C m−2 yr−1. We used biomass data to calculate NPP, and determined that it represented 44%–60% of GPP, with global change conditions decreasing carbon retention compared to the Control. Our results indicate that Phragmites invasions in eutrophied saltmarshes are driven, in part, by extended phenology yielding 3.1× greater NPP than native marsh. Further, we can expect elevated CO2 to amplify Phragmites productivity throughout the growing season, with potential implications including accelerated spread and greater carbon storage belowground

    Plant species determine tidal wetland methane response to sea level rise

    Get PDF
    Blue carbon (C) ecosystems are among the most effective C sinks of the biosphere, but methane (CH4) emissions can offset their climate cooling effect. Drivers of CH4 emissions from blue C ecosystems and effects of global change are poorly understood. Here we test for the effects of sea level rise (SLR) and its interactions with elevated atmospheric CO2, eutrophication, and plant community composition on CH4 emissions from an estuarine tidal wetland. Changes in CH4 emissions with SLR are primarily mediated by shifts in plant community composition and associated plant traits that determine both the direction and magnitude of SLR effects on CH4 emissions. We furthermore show strong stimulation of CH4 emissions by elevated atmospheric CO2, whereas effects of eutrophication are not significant. Overall, our findings demonstrate a high sensitivity of CH4 emissions to global change with important implications for modeling greenhouse-gas dynamics of blue C ecosystems

    Responses of stomatal features and photosynthesis to porewater N enrichment and elevated atmospheric CO2 in Phragmites australis, the common reed

    Get PDF
    PREMISE Biological invasions increasingly threaten native biodiversity and ecosystem services. One notable example is the common reed, Phragmites australis, which aggressively invades North American salt marshes. Elevated atmospheric CO2 and nitrogen pollution enhance its growth and facilitate invasion because P. australis responds more strongly to these enrichments than do native species. We investigated how modifications to stomatal features contribute to strong photosynthetic responses to CO2 and nitrogen enrichment in P. australis by evaluating stomatal shifts under experimental conditions and relating them to maximal stomatal conductance (g(wmax)) and photosynthetic rates.METHODS Plants were grown in situ in open-top chambers under ambient and elevated atmospheric CO2 (eCO(2)) and porewater nitrogen (N-enr) in a Chesapeake Bay tidal marsh. We measured light-saturated carbon assimilation rates (A(sat)) and stomatal characteristics, from which we calculated g(wmax) and determined whether CO2 and N-enr altered the relationship between g(wmax) and A(sat).RESULTS eCO(2) and N-enr enhanced both g(wmax) and A(sat), but to differing degrees; g(wmax) was more strongly influenced by N-enr through increases in stomatal density while A(sat) was more strongly stimulated by eCO(2). There was a positive relationship between g(wmax) and A(sat) that was not modified by eCO(2) or N-enr, individually or in combination.CONCLUSIONS Changes in stomatal features co-occur with previously described responses of P. australis to eCO(2) and N-enr. Complementary responses of stomatal length and density to these global change factors may facilitate greater stomatal conductance and carbon gain, contributing to the invasiveness of the introduced lineage

    Plant species determine tidal wetland methane response to sea level rise

    Get PDF
    Blue carbon (C) ecosystems are among the most effective C sinks of the biosphere, but methane (CH4) emissions can offset their climate cooling effect. Drivers of CH4 emissions from blue C ecosystems and effects of global change are poorly understood. Here we test for the effects of sea level rise (SLR) and its interactions with elevated atmospheric CO2, eutrophication, and plant community composition on CH4 emissions from an estuarine tidal wetland. Changes in CH4 emissions with SLR are primarily mediated by shifts in plant community composition and associated plant traits that determine both the direction and magnitude of SLR effects on CH4 emissions. We furthermore show strong stimulation of CH4 emissions by elevated atmospheric CO2, whereas effects of eutrophication are not significant. Overall, our findings demonstrate a high sensitivity of CH4 emissions to global change with important implications for modeling greenhouse-gas dynamics of blue C ecosystems

    Not All Nitrogen Is Created Equal: Differential Effects of Nitrate and Ammonium Enrichment in Coastal Wetlands

    Get PDF
    Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3−) and reduced forms (ammonium, NH4+) can relieve nutrient limitation and increase primary production. However, unlike NH4+, NO3− can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3− to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts

    Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed \u3cem\u3ePhragmites australis\u3c/em\u3e

    Get PDF
    Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant responses to global change. Here we review the ecology and ecophysiology of prominent P. australis lineages and their responses to multiple forms of global change. Key findings of our review are that: (1) P. australis lineages are well-adapted to regions of their phylogeographic origin and therefore respond differently to changes in climatic conditions such as temperature or atmospheric CO2; (2) each lineage consists of populations that may occur in geographically different habitats and contain multiple genotypes; (3) the phenotypic plasticity of functional and fitness-related traits of a genotype determine the responses to global change factors; (4) genotypes with high plasticity to environmental drivers may acclimate or even vastly expand their ranges, genotypes of medium plasticity must acclimate or experience range-shifts, and those with low plasticity may face local extinction; (5) responses to ancillary types of global change, like shifting levels of soil salinity, flooding, and drought, are not consistent within lineages and depend on adaptation of individual genotypes. These patterns suggest that the diverse lineages of P. australis will undergo intense selective pressure in the face of global change such that the distributions and interactions of co-occurring lineages, as well as those of genotypes within-lineages, are very likely to be altered. We propose that the strong latitudinal clines within and between P. australis lineages can be a useful tool for predicting plant responses to climate change in general and present a conceptual framework for using P. australis lineages to predict plant responses to global change and its consequences

    Cosmopolitan Species as Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis

    Get PDF
    Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant responses to global change. Here we review the ecology and ecophysiology of prominent P. australis lineages and their responses to multiple forms of global change. Key findings of our review are that: (1) P. australis lineages are well-adapted to regions of their phylogeographic origin and therefore respond differently to changes in climatic conditions such as temperature or atmospheric CO2; (2) each lineage consists of populations that may occur in geographically different habitats and contain multiple genotypes; (3) the phenotypic plasticity of functional and fitness-related traits of a genotype determine the responses to global change factors; (4) genotypes with high plasticity to environmental drivers may acclimate or even vastly expand their ranges, genotypes of medium plasticity must acclimate or experience range-shifts, and those with low plasticity may face local extinction; (5) responses to ancillary types of global change, like shifting levels of soil salinity, flooding, and drought, are not consistent within lineages and depend on adaptation of individual genotypes. These patterns suggest that the diverse lineages of P. australis will undergo intense selective pressure in the face of global change such that the distributions and interactions of co-occurring lineages, as well as those of genotypes within-lineages, are very likely to be altered. We propose that the strong latitudinal clines within and between P. australis lineages can be a useful tool for predicting plant responses to climate change in general and present a conceptual framework for using P. australis lineages to predict plant responses to global change and its consequences

    Jack-and-Master Trait Responses to Elevated CO(2) and N: A Comparison of Native and Introduced \u3ci\u3ePhragmites australis\u3c/i\u3e

    Get PDF
    Global change is predicted to promote plant invasions world-wide, reducing biodiversity and ecosystem function. Phenotypic plasticity may influence the ability of introduced plant species to invade and dominate extant communities. However, interpreting differences in plasticity can be confounded by phylogenetic differences in morphology and physiology. Here we present a novel case investigating the role of fitness trait values and phenotypic plasticity to global change factors between conspecific lineages of Phragmites australis. We hypothesized that due to observed differences in the competitive success of North American-native and Eurasian-introduced P. australis genotypes, Eurasian-introduced P. australis would exhibit greater fitness in response to global change factors. Plasticity and plant performance to ambient and predicted levels of carbon dioxide and nitrogen pollution were investigated to understand how invasion pressure may change in North America under a realistic global change scenario. We found that the introduced Eurasian genotype expressed greater mean trait values in nearly every ecophysiological trait measured - aboveground and belowground - to elevated CO(2) and nitrogen, outperforming the native North American conspecific by a factor of two to three under every global change scenario. This response is consistent with jack and master phenotypic plasticity. We suggest that differences in plant nitrogen productivity, specific leaf area, belowground biomass allocation, and inherently higher relative growth rate are the plant traits that may enhance invasion of Eurasian Phragmites in North America. Given the high degree of genotypic variability within this species, and our limited number of genotypes, our results must be interpreted cautiously. Our study is the first to demonstrate the potential importance of jack-and-master phenotypic plasticity in plant invasions when facing imminent global change conditions. We suggest that jack-and-master invasive genotypes and/or species similar to introduced P. australis will have an increased ecological fitness, facilitating their invasion in both stressful and resource rich environments

    Jack-and-Master Trait Responses to Elevated CO(2) and N: A Comparison of Native and Introduced \u3ci\u3ePhragmites australis\u3c/i\u3e

    No full text
    Global change is predicted to promote plant invasions world-wide, reducing biodiversity and ecosystem function. Phenotypic plasticity may influence the ability of introduced plant species to invade and dominate extant communities. However, interpreting differences in plasticity can be confounded by phylogenetic differences in morphology and physiology. Here we present a novel case investigating the role of fitness trait values and phenotypic plasticity to global change factors between conspecific lineages of Phragmites australis. We hypothesized that due to observed differences in the competitive success of North American-native and Eurasian-introduced P. australis genotypes, Eurasian-introduced P. australis would exhibit greater fitness in response to global change factors. Plasticity and plant performance to ambient and predicted levels of carbon dioxide and nitrogen pollution were investigated to understand how invasion pressure may change in North America under a realistic global change scenario. We found that the introduced Eurasian genotype expressed greater mean trait values in nearly every ecophysiological trait measured - aboveground and belowground - to elevated CO(2) and nitrogen, outperforming the native North American conspecific by a factor of two to three under every global change scenario. This response is consistent with jack and master phenotypic plasticity. We suggest that differences in plant nitrogen productivity, specific leaf area, belowground biomass allocation, and inherently higher relative growth rate are the plant traits that may enhance invasion of Eurasian Phragmites in North America. Given the high degree of genotypic variability within this species, and our limited number of genotypes, our results must be interpreted cautiously. Our study is the first to demonstrate the potential importance of jack-and-master phenotypic plasticity in plant invasions when facing imminent global change conditions. We suggest that jack-and-master invasive genotypes and/or species similar to introduced P. australis will have an increased ecological fitness, facilitating their invasion in both stressful and resource rich environments
    • …
    corecore