76 research outputs found

    Genes in S and T Subgenomes Are Responsible for Hybrid Lethality in Interspecific Hybrids between Nicotiana tabacum and Nicotiana occidentalis

    Get PDF
    Many species of Nicotiana section Suaveolentes produce inviable F(1) hybrids after crossing with Nicotiana tabacum (genome constitution SSTT), a phenomenon that is often called hybrid lethality. Through crosses with monosomic lines of N. tabacum lacking a Q chromosome, we previously determined that hybrid lethality is caused by interaction between gene(s) on the Q chromosome belonging to the S subgenome of N. tabacum and gene(s) in Suaveolentes species. Here, we examined if hybrid seedlings from the cross N. occidentalis (section Suaveolentes)×N. tabacum are inviable despite a lack of the Q chromosome.Hybrid lethality in the cross of N. occidentalis×N. tabacum was characterized by shoots with fading color. This symptom differed from what has been previously observed in lethal crosses between many species in section Suaveolentes and N. tabacum. In crosses of monosomic N. tabacum plants lacking the Q chromosome with N. occidentalis, hybrid lethality was observed in hybrid seedlings either lacking or possessing the Q chromosome. N. occidentalis was then crossed with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT), to reveal which subgenome of N. tabacum contains gene(s) responsible for hybrid lethality. Hybrid seedlings from the crosses N. occidentalis×N. tomentosiformis and N. occidentalis×N. sylvestris were inviable.Although the specific symptoms of hybrid lethality in the cross N. occidentalis×N. tabacum were similar to those appearing in hybrids from the cross N. occidentalis×N. tomentosiformis, genes in both the S and T subgenomes of N. tabacum appear responsible for hybrid lethality in crosses with N. occidentalis

    Selection against Spurious Promoter Motifs Correlates with Translational Efficiency across Bacteria

    Get PDF
    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the −10 promoter motifs that bind the σ70 subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of −10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, −10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also confirms previous results indicating that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria

    Massage-like stroking boosts the immune system in mice

    Get PDF
    Recent clinical evidence suggests that the therapeutic effect of massage involves the immune system and that this can be exploited as an adjunct therapy together with standard drug-based approaches. In this study, we investigated the mechanisms behind these effects exploring the immunomodulatory function of stroking as a surrogate of massage-like therapy in mice. C57/BL6 mice were stroked daily for 8 days either with a soft brush or directly with a gloved hand and then analysed for differences in their immune repertoire compared to control non-stroked mice. Our results show that hand-but not brush-stroked mice demonstrated a significant increase in thymic and splenic T cell number (p lt 0.05; p lt 0.01). These effects were not associated with significant changes in CD4/CD8 lineage commitment or activation profile. The boosting effects on T cell repertoire of massage-like therapy were associated with a decreased noradrenergic innervation of lymphoid organs and counteracted the immunosuppressive effect of hydrocortisone in vivo. Together our results in mice support the hypothesis that massage-like therapies might be of therapeutic value in the treatment of immunodeficiencies and related disorders and suggest a reduction of the inhibitory noradrenergic tone in lymphoid organs as one of the possible explanations for their immunomodulatory function

    Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase

    Get PDF
    Fidelity of chromosome segregation is monitored by the spindle assembly checkpoint (SAC). Key components of the SAC include MAD1, MAD2, BUB1, BUB3, BUBR1, and MPS1. These proteins accumulate on kinetochores in early prometaphase but are displaced when chromosomes attach to microtubules and/or biorient on the mitotic spindle. As a result, stable attachment of the final chromosome satisfies the SAC, permitting activation of the anaphase promoting complex/cyclosome (APC/C) and subsequent anaphase onset. SAC satisfaction is reversible, however, as addition of taxol during metaphase stops cyclin B1 degradation by the APC/C. We now show that targeting MAD1 to kinetochores during metaphase is sufficient to reestablish SAC activity after initial silencing. Using rapamycin-induced heterodimerization of FKBP-MAD1 to FRB-MIS12 and live monitoring of cyclin B1 degradation, we show that timed relocalization of MAD1 during metaphase can stop cyclin B1 degradation without affecting chromosome-spindle attachments. APC/C inhibition represented true SAC reactivation, as FKBP-MAD1 required an intact MAD2-interaction motif and MPS1 activity to accomplish this. Our data show that MAD1 kinetochore localization dictates SAC activity and imply that SAC regulatory mechanisms downstream of MAD1 remain functional in metaphase. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00412-014-0458-9) contains supplementary material, which is available to authorized users

    Managed Metapopulations: Do Salmon Hatchery ‘Sources’ Lead to In-River ‘Sinks’ in Conservation?

    Get PDF
    Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstrate that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes (34S/32S, referred to as δ34S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI = 5.5 to 18.1%) of adults spawning in the river had otolith δ34S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate = 95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. These findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs

    Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers

    Get PDF
    Microsatellites and gene-derived markers are still underrepresented in the core molecular linkage map of common bean compared to other types of markers. In order to increase the density of the core map, a set of new markers were developed and mapped onto the RIL population derived from the ‘BAT93’ × ‘Jalo EEP558’ cross. The EST-SSR markers were first characterized using a set of 24 bean inbred lines. On average, the polymorphism information content was 0.40 and the mean number of alleles per locus was 2.7. In addition, AFLP and RGA markers based on the NBS-profiling method were developed and a subset of the mapped RGA was sequenced. With the integration of 282 new markers into the common bean core map, we were able to place markers with putative known function in some existing gaps including regions with QTL for resistance to anthracnose and rust. The distribution of the markers over 11 linkage groups is discussed and a newer version of the common bean core linkage map is proposed

    Tempo and Mode in Evolution of Transcriptional Regulation

    Get PDF
    Perennial questions of evolutionary biology can be applied to gene regulatory systems using the abundance of experimental data addressing gene regulation in a comparative context. What is the tempo (frequency, rate) and mode (way, mechanism) of transcriptional regulatory evolution? Here we synthesize the results of 230 experiments performed on insects and nematodes in which regulatory DNA from one species was used to drive gene expression in another species. General principles of regulatory evolution emerge. Gene regulatory evolution is widespread and accumulates with genetic divergence in both insects and nematodes. Divergence in cis is more common than divergence in trans. Coevolution between cis and trans shows a particular increase over greater evolutionary timespans, especially in sex-specific gene regulation. Despite these generalities, the evolution of gene regulation is gene- and taxon-specific. The congruence of these conclusions with evidence from other types of experiments suggests that general principles are discoverable, and a unified view of the tempo and mode of regulatory evolution may be achievable

    Caenorhabditis briggsae Recombinant Inbred Line Genotypes Reveal Inter-Strain Incompatibility and the Evolution of Recombination

    Get PDF
    The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes

    Clinical significance of HIV-1 coreceptor usage

    Get PDF
    The identification of phenotypically distinct HIV-1 variants with different prevalence during the progression of the disease has been one of the earliest discoveries in HIV-1 biology, but its relevance to AIDS pathogenesis remains only partially understood. The physiological basis for the phenotypic variability of HIV-1 was elucidated with the discovery of distinct coreceptors employed by the virus to infect susceptible cells. The role of the viral phenotype in the variable clinical course and treatment outcome of HIV-1 infection has been extensively investigated over the past two decades. In this review, we summarize the major findings on the clinical significance of the HIV-1 coreceptor usage
    corecore