168 research outputs found

    The rise of fully turbulent flow

    Full text link
    Over a century of research into the origin of turbulence in wallbounded shear flows has resulted in a puzzling picture in which turbulence appears in a variety of different states competing with laminar background flow. At slightly higher speeds the situation changes distinctly and the entire flow is turbulent. Neither the origin of the different states encountered during transition, nor their front dynamics, let alone the transformation to full turbulence could be explained to date. Combining experiments, theory and computer simulations here we uncover the bifurcation scenario organising the route to fully turbulent pipe flow and explain the front dynamics of the different states encountered in the process. Key to resolving this problem is the interpretation of the flow as a bistable system with nonlinear propagation (advection) of turbulent fronts. These findings bridge the gap between our understanding of the onset of turbulence and fully turbulent flows.Comment: 31 pages, 9 figure

    Industry-relevant implicit large-eddy simulation of a high-performance road car via spectral/HP element methods

    Get PDF
    This is the author accepted manuscript. The final version is available from the Society for Industrial and Applied Mathematics via the DOI in this recordWe present a successful deployment of high-fidelity Large-Eddy Simulation (LES) technologies based on spectral/hp element methods to industrial flow problems, which are characterized by high Reynolds numbers and complex geometries. In particular, we describe the numerical methods, software development and steps that were required to perform the implicit LES of a real automotive car, namely the Elemental Rp1 model. To the best of the authors’ knowledge, this simulation represents the first high-order accurate transient LES of an entire real car geometry. Moreover, this constitutes a key milestone towards considerably expanding the computational design envelope currently allowed in industry, where steady-state modelling remains the standard. To this end, a number of novel developments had to be made in order to overcome obstacles in mesh generation and solver technology to achieve this simulation, which we detail in this paper. The main objective is to present to the industrial and applied mathematics community, a viable pathway to translate academic developments into industrial tools, that can substantially advance the analysis and design capabilities of high-end engineering stakeholders. The novel developments and results were achieved using the academic-driven open-source framework Nektar++.Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 2020Imperial College High Performance Computing ServiceNational University of SingaporeAirbu

    Significance of anti-neutrophil cytoplasmic antibodies in systemic sclerosis

    Get PDF
    Background: Up to 12% of patients with systemic sclerosis (SSc) have anti-neutrophil cytoplasmic antibodies (ANCA). However, the majority of these patients do not manifest ANCA-associated vasculitis (AAV) and the significance of ANCA in these patients is unclear. The aim of this study is to determine the prevalence of ANCA in a well-characterised SSc cohort and to examine the association between ANCA and SSc clinical characteristics, other autoantibodies, treatments and mortality. Methods: Clinical data were obtained from 5 centres in the Australian Scleroderma Cohort Study (ASCS). ANCA positive was defined as the presence of any one or combination of cytoplasmic ANCA (c-ANCA), perinuclear ANCA (p-ANCA), atypical ANCA, anti-myeloperoxidase (anti-MPO) or anti-proteinase-3 (anti-PR3). Associations of demographic and clinical features with ANCA were investigated by logistic or linear regression. Survival analysis was performed using Kaplan-Meyer curves and Cox regression models. Results: Of 1303 patients, 116 (8.9%) were ANCA positive. Anti-PR3 was more common than anti-MPO (13.8% and 11.2% of ANCA-positive patients, respectively). Only 3 ANCA-positive patients had AAV. Anti-Scl-70 was more common in ANCA positive vs ANCA negative (25% vs 12.8%, p < 0.001), anti-MPO positive vs anti-MPO negative (38.5% vs 13.6%, p = 0.006) and anti-PR3 positive vs anti-PR3 negative patients (44.4% vs 13.4%, p < 0.001). A higher prevalence of interstitial lung disease (ILD) was found in the ANCA positive (44.8% vs 21.8%, p < 0.001) and the anti-PR3 positive groups (50.0% vs 23.4%, p = 0.009). In multivariable analysis, ANCA-positive status remained associated with ILD after adjusting for anti-Scl-70 antibodies. Pulmonary embolism (PE) was more common in ANCA-positive patients (8.6% vs 3.0%, p = 0.002) and anti-PR3-positive patients (16.7% vs 3.3%, p = 0.022). ANCA-positive status remained associated with PE in a multivariable analysis adjusting for anti-phospholipid antibodies. Kaplan-Meier analysis revealed increased mortality in ANCA-positive patients (p = 0.006). In Cox regression analysis, ANCA was associated with increased mortality, after adjusting for age and sex. Conclusions: ANCA is associated with increased prevalence of ILD and PE in SSc. ANCA should be tested in SSc, as it identifies individuals with worse prognosis who require close monitoring for adverse outcomes.Jayne Moxey, Molla Huq, Susanna Proudman, Joanne Sahhar, Gene-Siew Ngian, Jenny Walker, Gemma Strickland, Michelle Wilson, Laura Ross, Gabor Major, Janet Roddy, Wendy Stevens, and Mandana Nikpou

    Cross-scale analysis of social-ecological systems:Policy options appraisal for delivering NetZero and other environmental objectives in Scotland

    Get PDF
    Public policy confronts complex, contested, wicked problems such as climate and biodiversity crises with challenges of how issues are framed, analysed, codified, and interpreted. Social-ecological systems provide an analytical framework that couples the biosphere and technosphere, recognising biophysical limits and emphasising the importance of critical reflection within policy decision-making. Conducting policy-options appraisals is increasingly seen as a transdisciplinary research-policy endeavour with researchers engaging policy actors in an extended peer community (post-normal science). This paper presents a case study of analysis undertaken with researchers, policy analysts, policy makers and other stakeholders to support decisions on how to implement future agriculture support in Scotland, so that the policy programme better delivers across social, economic and environmental objectives. The key change being considered in the future agricultural support programme is Enhanced Conditionality (EC) where the level of financial support provided to farm-businesses will depend on their undertaking agri-environmental measures that deliver against the key priorities of reducing greenhouse gas emissions and reversing biodiversity losses. The paper outlines the policy context within which the EC options appraisal takes place – highlighting how EC is a crucial component in making the wider suite of policy measures work. The transdisciplinary approach, Quantitative Story Telling (QST) is presented, emerging from decision support, participatory research, and post-normal science for policy domains. The stages of QST highlight the importance of analysis that underpins any quantification (decision on how issues are framed and what it included in the analysis) and the expectation that research outputs with be deliberated on with, and interpreted from, stakeholder perspectives. The project specific analyses are outlined, combining top-down options appraisal of how macro-policy decisions could constrain EC and bottom-up analysis of potential uptake and effectiveness of EC measures, undertaken in inter-disciplinary workshops with domain experts from biodiversity, soils and waters. The paper highlights challenges for implementation and evaluation at meso-scale with interactions between farm-businesses and catchment, landscape and regional objectives. The conclusions of the analysis, in policy terms, are that EC presents an opportunity to significantly realign how agricultural land management is conducted in Scotland, so that it is more effective in delivering climate change and biodiversity objectives, but there are formidable challenges in resolving the policy “sudoku”. Meso-scale issues are likely to mean the need to integrate alternative modelling paradigms such as spatial, empirical agent-based modelling (ABM) into policy option appraisals. By taking multi-scale, social-ecological systems perspectives on EC it has been possible to identify key policy decisions at a range of scales on which the success of EC will depend, to have a realistic understanding of how effective the EC measures might be in heterogenous Scottish environments and what are the likely barriers to uptake. The analysis also highlighted where outcomes of the policy change are likely to be challenging to monitor-evaluate; and where there are dependencies between farm-businesses that mean EC measures need to be supplemented with mechanisms that (1) promote cooperation between land managers and (2) identify and respond to agreed local priorities. The value of the participatory QST process was in making sure the analyses being undertaken were salient and the outputs seen as credible – but the challenges of interpreting necessarily complex outputs remain. The greatest value of QST may be that it provides a structured way to navigate complexity with policy makers rather than seeking to control or eliminate it.</p

    Cross-scale analysis of social-ecological systems:Policy options appraisal for delivering NetZero and other environmental objectives in Scotland

    Get PDF
    Public policy confronts complex, contested, wicked problems such as climate and biodiversity crises with challenges of how issues are framed, analysed, codified, and interpreted. Social-ecological systems provide an analytical framework that couples the biosphere and technosphere, recognising biophysical limits and emphasising the importance of critical reflection within policy decision-making. Conducting policy-options appraisals is increasingly seen as a transdisciplinary research-policy endeavour with researchers engaging policy actors in an extended peer community (post-normal science). This paper presents a case study of analysis undertaken with researchers, policy analysts, policy makers and other stakeholders to support decisions on how to implement future agriculture support in Scotland, so that the policy programme better delivers across social, economic and environmental objectives. The key change being considered in the future agricultural support programme is Enhanced Conditionality (EC) where the level of financial support provided to farm-businesses will depend on their undertaking agri-environmental measures that deliver against the key priorities of reducing greenhouse gas emissions and reversing biodiversity losses. The paper outlines the policy context within which the EC options appraisal takes place – highlighting how EC is a crucial component in making the wider suite of policy measures work. The transdisciplinary approach, Quantitative Story Telling (QST) is presented, emerging from decision support, participatory research, and post-normal science for policy domains. The stages of QST highlight the importance of analysis that underpins any quantification (decision on how issues are framed and what it included in the analysis) and the expectation that research outputs with be deliberated on with, and interpreted from, stakeholder perspectives. The project specific analyses are outlined, combining top-down options appraisal of how macro-policy decisions could constrain EC and bottom-up analysis of potential uptake and effectiveness of EC measures, undertaken in inter-disciplinary workshops with domain experts from biodiversity, soils and waters. The paper highlights challenges for implementation and evaluation at meso-scale with interactions between farm-businesses and catchment, landscape and regional objectives. The conclusions of the analysis, in policy terms, are that EC presents an opportunity to significantly realign how agricultural land management is conducted in Scotland, so that it is more effective in delivering climate change and biodiversity objectives, but there are formidable challenges in resolving the policy “sudoku”. Meso-scale issues are likely to mean the need to integrate alternative modelling paradigms such as spatial, empirical agent-based modelling (ABM) into policy option appraisals. By taking multi-scale, social-ecological systems perspectives on EC it has been possible to identify key policy decisions at a range of scales on which the success of EC will depend, to have a realistic understanding of how effective the EC measures might be in heterogenous Scottish environments and what are the likely barriers to uptake. The analysis also highlighted where outcomes of the policy change are likely to be challenging to monitor-evaluate; and where there are dependencies between farm-businesses that mean EC measures need to be supplemented with mechanisms that (1) promote cooperation between land managers and (2) identify and respond to agreed local priorities. The value of the participatory QST process was in making sure the analyses being undertaken were salient and the outputs seen as credible – but the challenges of interpreting necessarily complex outputs remain. The greatest value of QST may be that it provides a structured way to navigate complexity with policy makers rather than seeking to control or eliminate it.</p

    Letter Ruling 99-1: Electronic Retailers

    Get PDF
    The synthesis and characterization of a set of redox-active iron and ruthenium alkynyl complexes of general formula [[M]­Cl<sub>(1–<i>p</i>)</sub>{CCC<sub>6</sub>H<sub>5–<i>m</i></sub>(CCFlu)<sub><i>m</i></sub>}<sub>(1+<i>p</i>)</sub>]­[PF<sub>6</sub>]<sub><i>n</i></sub> are reported (<i>n</i> = 0–1; <i>m</i> = 1–2; [M] = [Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)] and <i>p</i> = 1 or [M] = [<i>trans</i>-Ru­(κ<sup>2</sup>-dppe)<sub>2</sub>] and <i>p</i> = 0–1). The linear and third-order nonlinear optical properties of these new organometallic complexes featuring phenylalkynyl ligands functionalized by 2-fluorenyl (Flu) groups were studied in their stable redox states. Their first electronic transitions are assigned with the help of DFT calculations. We show here that these compounds possess significant third-order NLO responses in the near-IR range for molecules of their size. In particular, the remarkably large 2PA activities of the new Ru­(II) compounds in the 600–800 nm range (<i>Z</i>-scan) make them attractive nonlinear chromophores. Structure–property studies emphasize the importance of para- versus meta-connection of the 2-fluorenylethynyl units on the phenylalkynyl core and reveal that upon progressing from mono- to bis-alkynyl complexes a further increase of the 2PA cross section can be obtained while maintaining linear transparency in the visible range

    Non-invasive management of peripheral arterial disease.

    No full text
    BACKGROUND: Peripheral arterial disease (PAD) is common and symptoms can be debilitating and lethal. Risk management, exercise, radiological and surgical intervention are all valuable therapies, but morbidity and mortality rates from this disease are increasing. Circulatory enhancement can be achieved using simple medical electronic devices, with claims of minimal adverse side effects. The evidence for these is variable, prompting a review of the available literature. METHODS: Embase and Medline were interrogated for full text articles in humans and written in English. Any external medical devices used in the management of peripheral arterial disease were included if they had objective outcome data. RESULTS: Thirty-one papers met inclusion criteria, but protocols were heterogenous. The medical devices reported were intermittent pneumatic compression (IPC), electronic nerve (NMES) or muscle stimulators (EMS), and galvanic electrical dressings. In patients with intermittent claudication, IPC devices increase popliteal artery velocity (49-70 %) and flow (49-84 %). Gastrocnemius EMS increased superficial femoral artery flow by 140 %. Over 4.5-6 months IPC increased intermittent claudication distance (ICD) (97-150 %) and absolute walking distance (AWD) (84-112 %), with an associated increase in quality of life. NMES of the calf increased ICD and AWD by 82 % and 61-150 % at 4 weeks, and 26 % and 34 % at 8 weeks. In patients with critical limb ischaemia IPC reduced rest pain in 40-100 % and was associated with ulcer healing rates of 26 %. IPC had an early limb salvage rate of 58-83 % at 1-3 months, and 58-94 % at 1.5-3.5 years. No studies have reported the use of EMS or NMES in the management of CLI. CONCLUSION: There is evidence to support the use of IPC in the management of claudication and CLI. There is a building body of literature to support the use of electrical stimulators in PAD, but this is low level to date. Devices may be of special benefit to those with limited exercise capacity, and in non-reconstructable critical limb ischaemia. Galvanic stimulation is not recommended

    Photocatalytic Nanolithography of Self-Assembled Monolayers and Proteins

    Get PDF
    Self-assembled monolayers of alkylthiolates on gold and alkylsilanes on silicon dioxide have been patterned photocatalytically on sub-100 nm length-scales using both apertured near-field and apertureless methods. Apertured lithography was carried out by means of an argon ion laser (364 nm) coupled to cantilever-type near-field probes with a thin film of titania deposited over the aperture. Apertureless lithography was carried out with a helium–cadmium laser (325 nm) to excite titanium-coated, contact-mode atomic force microscope (AFM) probes. This latter approach is readily implementable on any commercial AFM system. Photodegradation occurred in both cases through the localized photocatalytic degradation of the monolayer. For alkanethiols, degradation of one thiol exposed the bare substrate, enabling refunctionalization of the bare gold by a second, contrasting thiol. For alkylsilanes, degradation of the adsorbate molecule provided a facile means for protein patterning. Lines were written in a protein-resistant film formed by the adsorption of oligo(ethylene glycol)-functionalized trichlorosilanes on glass, leading to the formation of sub-100 nm adhesive, aldehyde-functionalized regions. These were derivatized with aminobutylnitrilotriacetic acid, and complexed with Ni2+, enabling the binding of histidine-labeled green fluorescent protein, which yielded bright fluorescence from 70-nm-wide lines that could be imaged clearly in a confocal microscope
    corecore