371 research outputs found

    Processing quantified noun phrases with numbers versus verbal quantifiers

    Get PDF
    Statements containing quantity information are commonplace. Although there is literature explaining the way in which quantities themselves are conveyed in numbers or words (e.g., many, probably), there is less on the effects of different types of quantity description on the processing of surrounding text. Given that quantity information is usually conveyed to alter our understanding of a situation (e.g., to convey information about a risk), our understanding of the rest of the quantified statement is clearly important. In this article texts containing quantified statements expressed numerically versus verbally are compared in two text change experiments to assess how the entire quantified noun phrase is encoded in each case. On the basis of the results it is argued that numerical quantifiers place focus on the size of a subset, whereas verbal quantifiers are better integrated with nouns leading to more focus on the subset itself

    Automatic generation of 3D unstructured high-order curvilinear meshes

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The generation of suitable, good quality high-order meshes is a significant obstacle in the academic and industrial uptake of high-order CFD methods. These methods have a number of favourable characteristics such as low dispersion and dissipation and higher levels of numerical accuracy than their low-order counterparts, however the methods are highly susceptible to inaccuracies caused by low quality meshes. These meshes require significant curvature to accuratly describe the geometric surfaces, which presents a number of difficult challenges in their generation. As yet, research into the field has produced a number of interesting technologies that go some way towards achieving this goal, but are yet to provide a complete system that can systematically produce curved high-order meshes for arbitrary geometries for CFD analysis. This paper presents our efforts in that direction and introduces an open-source high-order mesh generator, NekMesh, which has been created to bring high-order meshing technologies into one coherent pipeline which aims to produce 3D high-order curvilinear meshes from CAD geometries in a robust and systematic way

    A framework for the generation of high-order curvilinear hybrid meshes for CFD simulations

    Get PDF
    We present a pipeline of state-of-the-art techniques for the generation of high-order meshes that contain highly stretched elements in viscous boundary layers, and are suitable for flow simulations at high Reynolds numbers. The pipeline uses CADfix to generate a medial object based decomposition of the domain, which wraps the wall boundaries with prismatic partitions. The use of medial object allows the prism height to be larger than is generally possible with advancing layer techniques. CADfix subsequently generates a hybrid straight-sided (or linear) mesh. A high-order mesh is then generated a posteriori using NekMesh, a high-order mesh generator within the Nektar++ framework. During the high-order mesh generation process, the CAD definition of the domain is interrogated; we describe the process for integrating the CADfix API as an alternative backend geometry engine for NekMesh, and discuss some of the implementation issues encountered. Finally, we illustrate the methodology using three geometries of increasing complexity: a wing tip, a simplified landing gear and an aircraft in cruise configuration

    Combined CG-HDG Method for Elliptic Problems: Performance Model

    Get PDF
    We combine continuous and discontinuous Galerkin methods in the setting of a model diffusion problem. Starting from a hybrid discontinuous formulation, we replace element interiors by more general subsets of the computational domain - groups of elements that support a piecewise-polynomial continuous expansion. This step allows us to identify a~new weak formulation of Dirichlet boundary condition in the continuous framework. We examine the expected performance of a Galerkin solver that would use continuous Galerkin method with weak Dirichlet boundary conditions in each mesh partition and connect partitions weakly using trace variable as in HDG method

    On weak Dirichlet boundary conditions for elliptic problems in the continuous Galerkin method

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.We combine continuous and discontinuous Galerkin methods in the setting of a model diffusion problem. Starting from a hybrid discontinuous formulation, we replace element interiors by more general subsets of the computational domain – groups of elements that support a piecewisepolynomial continuous expansion. This step allows us to identify a new weak formulation of Dirichlet boundary condition in the continuous framework. We show that the boundary condition leads to a stable discretization with a single parameter insensitive to mesh size and polynomial order of the expansion. The robustness of the approach is demonstrated on several numerical examples.European Union Horizon 2020US National Science Foundatio

    Nanotribological Investigation of Polymer Brushes with Lithographically Defined and Systematically Varying Grafting Densities.

    Get PDF
    Following controlled photodeprotection of a 2-nitrophenylpropyloxycarbonyl-protected (aminopropyl)triethoxysilane (NPPOC-APTES) film and subsequent derivatization with a bromoester-based initiator, poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC) brushes with various grafting densities were grown from planar silicon substrates using atom transfer radical polymerization (ATRP). The grafting density correlated closely with the extent of deprotection of the NPPOC-APTES. The coefficient of friction for such PMPC brushes was measured by friction force microscopy in water and found to be inversely proportional to the grafting density due to the osmotic pressure that resists deformation. Deprotection of NPPOC-APTES via near-field photolithography using a range of writing rates enabled the fabrication of neighboring nanoscopic polymeric structures with dimensions ranging from 100 to 1000 nm. Slow writing rates enable complete deprotection to occur; hence, polymer brushes are formed with comparable thicknesses to macroscopic brushes grown under the same conditions. However, the extent of deprotection is reduced at higher writing rates, resulting in the concomitant reduction of the brush thickness. The coefficient of friction for such polymer brushes varied smoothly with brush height, with lower coefficients being obtained at slower writing rate (increasing initiator density) because the solvated brush layer confers greater lubricity. However, when ultrasharp probes were used for nanotribological measurements, the coefficient of friction increased with brush thickness. Under such conditions, the radius of curvature of the tip is comparable to the mean spacing between brush chains, allowing the probe to penetrate the brush layer leading to a relatively large contact area

    A variational framework for high-order mesh generation

    Get PDF
    The generation of sufficiently high quality unstructured high-order meshes remains a significant obstacle in the adoption of high-order methods. However, there is little consensus on which approach is the most robust, fastest and produces the ‘best’ meshes. We aim to provide a route to investigate this question, by examining popular high-order mesh generation methods in the context of an efficient variational framework for the generation of curvilinear meshes. By considering previous works in a variational form, we are able to compare their characteristics and study their robustness. Alongside a description of the theory and practical implementation details, including an efficient multi-threading parallelisation strategy, we demonstrate the effectiveness of the framework, showing how it can be used for both mesh quality optimisation and untangling of invalid meshes

    Compliance with surgical care improvement project blood glucose--a marker for euglycemia, but does it put our patients at risk?

    Get PDF
    To improve outcomes in open heart surgery (OHS) patients, the Surgical Care Improvement Project (SCIP) requires 6 am postoperative day (POD) 1 and 2 blood glucose (BG) to be ≤200mg/dL. This study examined risk factors for SCIP noncompliance when using an insulin infusion protocol (IIP) and evaluated this SCIP metric as a surrogate for glycemic control. The authors divided 99 consecutive OHS patients, all subjected to 1 uniform IIP, into 2 groups: Group 1-SCIP compliant (n=79) and Group 2-SCIP noncompliant (n=20). They determined mean BG for the first 48 postoperative hours, percent of total time with hyperglycemia (% time BG \u3e200mg/dL) for each group, and assessed risk of SCIP noncompliance as relates to multiple risk factors including intensity of IIP application, and switching to subcutaneous (SQ) insulin prior to 6 am on POD 2. Group 1 had lower mean BG than Group 2 and percent of total time with hyperglycemia,
    • …
    corecore