
Combined CG-HDG Method for
Elliptic Problems: Performance Model

Martin Vymazal1 David Moxey2 Chris Cantwell1

Spencer Sherwin1 Robert M. Kirby3

November 22, 2018

We combine continuous and discontinuous Galerkin methods in the setting of
a model diffusion problem. Starting from a hybrid discontinuous formulation, we
replace element interiors by more general subsets of the computational domain
- groups of elements that support a piecewise-polynomial continuous expansion.
This step allows us to identify a new weak formulation of Dirichlet boundary
condition in the continuous framework. We examine the expected performance of
a Galerkin solver that would use continuous Galerkin method with weak Dirichlet
boundary conditions in each mesh partition and connect partitions weakly using
trace variable as in HDG method.

1 Motivation for combining CG and HDG

High-order methods on unstructured grids are now increasingly being used to improve the
accuracy of flow simulations since they simultaneously provide geometric flexibility and high
fidelity. We are particularly interested in efficient algorithms for incompressible Navier-Stokes
equations that employ high-order space discretization and a time splitting scheme. The cost
of one step in time is largely determined by the amount of work needed to obtain the pressure
field, which is defined as a solution to a scalar elliptic problem. Several Galerkin-type methods
are available for this task, each of them have specific advantages and drawbacks.

High-order continuous Galerkin (CG) method is the oldest. Compared to its discontinuous
counterparts, it involves a smaller number of unknowns (figure 1), especially in a low-order
setting. The CG solution can be accelerated by means of static condensation, which produces
a globally coupled system involving only those degrees of freedom on the mesh skeleton. The
element interior unknowns are subsequently obtained from the mesh skeleton data by solving
independent local problems that do not require any parallel communication. The amount
of information interchanged while constructing and solving the statically condensed system,
however, is determined by the topology of the underlying grid. Unstructured mesh generators
often produce meshes with high vertex valency (number of elements incident to given vertex)

1Department of Aeronautics, Imperial College London, London, UK
2College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK
3School of Computing, Univ. of Utah, Salt Lake City, UT, USA

1

ar
X

iv
:1

81
1.

11
85

5v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
3

N
ov

 2
01

8

Figure 1: Distribution of unknowns for continuous and discontinuous Galerkin methods.

and CG therefore has rather complex communication patterns in parallel runs, which has a
negative impact on scaling [5].

Discontinuous Galerkin (DG) methods [1], on the other hand, duplicate discrete variables
on element boundaries, thus decoupling mesh elements and requiring at most pairwise com-
munication between them. This is at the expense of larger linear system and more time spent
in the linear solver. Discontinuous discretization is therefore expected to scale better on par-
allel computers, but the improved scaling is not necessarily reflected in significantly smaller
CPU times when compared to a CG solver.

Hybrid discontinuous Galerkin (HDG) methods [2] address this problem by introducing an
additional (hybrid) variable on the mesh skeleton. The hybrid degrees of freedom determine
the rank of the global system matrix and HDG therefore produces a statically condensed
system that is similar in size to the CG case. In contrast with CG, the static condensation in
HDG takes place by construction rather than being an optional iterative technique. Similarly
to the classical DG method, HDG scales favourably in comparison with CG, but the work-
to-communication ratio is once again improved due to increased amount of intra-node work
rather than due to better overall efficiency.

To maximize the potential of each Galerkin variant in a unified setting, we study a finite el-
ement discretization that combines the continuous and discontinuous approach by considering
a hybrid discontinuous Galerkin method applied to connected groups of elements supporting
a globally continuous polynomial basis. This settings leads naturally to a formulation of weak
Dirichlet boundary conditions for the CG method.

The next section reviews the Hybridizable Discontinuous Galerkin Method which is then
modified in order to obtain the mixed CG-HDG solver.

2 Overview of the formulation of HDG method

We begin with a brief recap of the standard HDG formulation for a finite element mesh,
following a similar approach to that taken in [3] and [5].

2

Figure 2: Computational domain and its tesselation demonstrating notation used in the text.

2.1 Continuous problem

We seek the solution of a Poisson equation as a representative elliptic problem

−∇2u(x) = f(x) x ∈ Ω, (1)

u(x) = gD(x) x ∈ ∂ΩD,

n · ∇u(x) = gN (x) x ∈ ∂ΩN ,

on a domain Ω with Dirichlet (∂ΩD) and Neumann (∂ΩN) boundary conditions, where
∂ΩD

⋃
∂ΩN = ∂Ω and ∂ΩD

⋂
∂ΩN = ∅. To formulate the HDG method, we consider a mixed

form of (1) by introducing an auxiliary variable q = ∇u:

−∇ · q = f(x) x ∈ Ω, (2)

q = ∇u(x) x ∈ Ω, (3)

u(x) = gD(x) x ∈ ∂ΩD, (4)

q · n = gN (x) x ∈ ∂ΩN . (5)

The gradient variable q is approximated together with the primal variable u, which contrasts
with the CG method and other discontinuous methods for (1).

2.2 HDG interpolation spaces and discretization

We limit ourselves to two-dimensional problems for sake of simplicity, but the formal descrip-
tion remains unchanged in three dimensions. We assume that in the discrete setting, the
computational domain Ω is approximated by its tesselation Th consisting of non-overlapping
and conformal elements Ke such that for each pair of distinct indices ei 6= ej , K

ei ∩Kej = ∅.
The symbol Γl denotes an interior edge of the tesselation Th, i.e. an edge Γl = K̄i∩ K̄j where
Ki and Kj are two distinct elements of the tesselation. We say that Γl is a boundary edge
of the tesselation Th if there exists an element Ke such that Γl = Ke ∩ ∂Ω and the length of
Γl is not zero, as shown in figure 2. The set of all internal edges is denoted by E0

h, while E∂h
is a set of all boundary edges. Their union Eh comprises of all mesh edges, Eh = E0

h ∪ E∂h .

In order to describe some terms in the HDG formulation, it is also useful to introduce
mappings that relate elements to their local edges, as shown in figure 3. Let ∂Ke

j be the

j-th edge of element Ke, and suppose that this is also the l-th edge Γl in the global edge

3

Figure 3: Index mappings relating edge and element ids.

numbering. Then we define the local-to-global edge mapping σ by setting σ(e, j) = l so that
we can write ∂Ke

j = Γσ(e,j). An interior edge Γl is the intersection of the boundaries of two

elements Ke and Kf , hence we set η(l,+) = e and η(l,−) = f in order to be able to write
Γl = ∂Kη(l,+) ∩ ∂Kη(l,−).

2.3 Approximation spaces

The finite element spaces supported by the (two-dimensional) tesselation Th are defined as
follows:

Vh := {v ∈ L2(Ω) : v|Ke ∈ P(Ke) ∀Ke ∈ Th},
Σh := {w ∈ [L2(Ω)]2 : w|Ke ∈ Σ(Ke) ∀Ke ∈ Th},
Mh := {µ ∈ L2(Ω) : µ|Γl ∈ P(Γl) ∀Γl ∈ Γ},

where P(Γl) = SP (Γl) is the polynomial space over the standard segment

SP (Γl) = {sp : 0 ≤ p ≤ P, [x1(s), x2(s)] ∈ Γl, −1 ≤ s ≤ 1},

and P(Ke) is the space of polynomials of degree P defined on a standard region, which can
either be the standard triangle

P(Ke) = TP (Ke) = {ξp1ξqw : 0 ≤ p+ q ≤ P, [x1(ξ1, ξ2), x2(ξ1, ξ2)] ∈ Ke, −1 ≤ ξ1 + ξ2 ≤ 0},

or standard quadrilateral

P(Ke) = QP (Ke) = {ξp1ξq2 : 0 ≤ p, q ≤ P, [x1(ξ1, ξ2), (x2(ξ1, ξ2)] ∈ Ke, −1 ≤ ξ1, ξ2 ≤ 1}.

Similarly Σ(Ke) = [TP (Ke)]2 or Σ(Ke) = [QP (Ke)]2. There is no requirement on global
continuity of the expansion. This is also true for the trace space Mh: a discrete variable
λ ∈Mh is multi-valued at every mesh vertex shared by multiple interior edges.

4

2.4 Global formulation for HDG problem

Given an element K ∈ Th and two functions u, v ∈ L2(Th), we define their L2 scalar product
by

(u, v)Th =
∑
K∈Th

(u, v)K , where (u, v)K =

∫
K

uv dx.

Similarly, the L2 product of functions u and v that are square-integrable on element traces
are defined by:

〈u, v〉∂Th =
∑
K∈Th

〈u, v〉∂K where 〈u, v〉∂K =

∫
∂K

uv ds

The DG method seeks an approximation pair (uDG, qDG) to u and q, respectively, in the
space Vh ×Σh. The solution is required to satisfy the weak form of (2) and (3)(

qDG,∇v
)
Th

= (f, v)Th +
〈
ne · q̃DG, v

〉
∂Th

(6)(
qDG,w

)
Th

= −
(
uDG,∇ ·w

)
Th

+
〈
ũDG,w · ne

〉
∂Th

(7)

for all (v,w) ∈ Vh(Ω)×Σh(Ω), where the numerical traces ũDG and q̃DG have to be suitably
defined in terms of the approximate solution (uDG, qDG). For details, we refer the reader
to [2]. This choice of trace variables allows us to construct the discrete HDG system involving
only trace degrees of freedom ũDG. Once ũ is known, the element-interior degrees of freedom
represented by both the primal variable u and gradient q can be reconstructed from element-
boundary values.

We note that the element-interior variable u restricted to element traces is not equal to the
hybrid variable ũ, but only approximates it: due to the definition of approximation spaces
Vh and Mh, u must be continuous along element boundaries, while ũDG is allowed to have
jumps in element vertices.

2.5 Local solvers in the HDG method

Assume that the function
λ := ũDG ∈Mh, (8)

is given. Then the solution restricted to element Ke is a function ue, qe in P (Ke) ×Σ(Ke)
that satisfies the following equations:

(qe,∇v)Ke = (f, v)Ke + 〈ne · q̃e, v〉∂Ke (9)

(qe,w)Ke = − (ue,∇ ·w)Ke + 〈λ,w · ne〉∂Ke , (10)

for all (v,w) ∈ P (Ke) × Σ(Ke). For a unique solution of the above equations to exist, the
numerical trace of the flux must depend only on λ and on (ue, qe):

q̃e(x) = qe(x)− τ
(
ue(x)− λ(x)

)
ne on ∂Ke (11)

for some positive function τ . The analysis presented in [2] reveals that as long as τ > 0, its
value can be arbitrary without degrading the robustness of the solver. For the limiting value
of τ →∞, one obtains a statically condensed continuous Galerkin formulation. In this sense,
τ plays the role of a method selector as opposed to traditional penalty parameter used in
Nitsche’s method, for example.

5

2.6 Global problem for trace variable

We denote by (Uλ,Qλ) and by (Uf ,Qf) the solution to the local problem (9), (10) when
λ = 0 and f = 0, respectively. Due to the linearity of the original problem (1) and its mixed
form, the solution satisfies

(uHDG, qHDG) = (Uλ,Qλ) + (Uf ,Qf). (12)

In order to uniquely determine λ, we require that the boundary conditions be weakly satisfied
and the normal component of the numerical trace of the flux q̃ given by (11) is single valued,
rendering the numerical trace conservative.

We say that λ is the element of Mh such that

λ = Ph(gD) on ∂ΩD (13)

〈µ, q̃ · n〉∂T = 〈µ, gN 〉∂ΩN
, (14)

for all µ ∈M0
h such that µ = 0 on ∂ΩD. Here Ph denotes the L2-projection into the space of

restrictions to ∂ΩD of functions of Mh.
In the following, we consider ue(x), qe(x) = [q1, q2]T and λl(x) to be finite expansions in

terms of basis functions φej(x) for the expansions over elements and the basis ψlj(x) over the
traces of the form:

ue(x) =

Ne
u∑

j=1

φej(x)ûe[j] qek(x) =

Ne
q∑

j=1

φej(x)q̂e
k
[j] λl(x) =

N l
λ∑

j=1

ψlj(x)λ̂
l
[j]

3 Discrete form of HDG local solver

We now define several local matrices stemming from standard Galerkin formulation, where
scalar test functions ve are represented by φei (x), with i = 1, . . . , N e

u.

De
k[i, j] =

(
φei ,

∂φej
∂xk

)
Ke

Me[i, j] =
(
φei , φ

e
j

)
Ke

Ee
l [i, j] =

〈
φei , φ

e
j

〉
∂Ke

l

Ẽe
kl[i, j] =

〈
φei , φ

e
jn
e
k

〉
∂Ke

l

Fe
l [i, j] =

〈
φei , ψ

σ(e,l)
j

〉
∂Ke

l

F̃e
kl[i, j] =

〈
φei , ψ

σ(e,l)
j nek

〉
∂Ke

l

If the trace expansion matches the expansions used along the edge of the elemental expansion

and the local coordinates are aligned, that is ψ
σ(e,l)
i (s) = φk(i)(s) then Ee

l contains the same

entries as Fe
l and similarly Ẽe

kl contains the same entries as F̃e
kl.

Inserting the finite expansions of the trial functions into equations (9) and (10), and using
the definition of the flux (11) yields the matrix form of local solvers

∑
k=1,2

(De
k)
T −

Ne
b∑

l=1

[
Ẽe
kl

] q̂e
k

+

Ne
b∑

l=1

τ e,l
[
Ee
l û
e − Fe

l λ̂
σ(e,l)

]
= fe (15)

Meq̂e
k

= −(De
k)
T ûe +

Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)
k = 1, 2 (16)

6

The global equation for λ can be obtained by discretizing the transmission condition (14). We
introduce local element-based and edge-based matrices

F
l,e

[i, j] =
〈
ψli, φ

e
j

〉
Γl

'
F
l,e

k [i, j] =
〈
ψli, φ

e
jn
e
k

〉
Γl

Ḡl[i, j] =
〈
ψli, ψ

l
j

〉
Γl

and define

gl
N

[i] =
〈
gn, ψ

l
i

〉
Γl

⋂
∂ΩN

.

The transmission condition in matrix form is then[
'
F
l,e

1

'
F
l,e

2

] q̂e
1

q̂e
2

+

[
'
F
l,f

1

'
F
l,f

2

] q̂f
1

q̂f
2

+ (τ e,i + τ f,j)Ḡlλ̂
l − τ e,iF̄l,eue − τ f,jF̄l,fuf = gl

N
,

where we are assuming that l = σ(e, i) = σ(f, j).

4 Combined Continuous-Discontinuous Formulation

To take advantage of the efficiency and lower memory requirements of continuous Galerkin
method together with the flexibility and more favorable communication patterns of discontin-
uous Galerkin methods in domain-decomposition setting, we combine both as follows. Each
mesh partition is seen as a ’macro-element’, where the governing equation is discretized by
continuous Galerkin solver, while the patches are coupled together weakly as in HDG. This
means that the scalar flux (hybrid variable) λ is only defined on inter-partition boundaries.

5 Continuous-Discontinuous Solver

Given the hybrid CG-HDG setup, the HDG local solver defined previously for one element
would now be applied to a group of elements supporting a piecewise-continuous basis. The
motivation of this section is to take the matrix form of the HDG solver and apply it in
such piecewise-continuous setting. We will show that the discrete weak form reduces to the
’standard’ Laplace operator plus extra terms, which will be only applied on elements adjacent
to partition boundaries, providing weak coupling between each partition and the global trace
variable.

7

We start again from the weak mixed problem (9), (10), but integrate the second term in
the flux equation (10) by parts once again. This modified flux form allows for a symmetric
boundary contribution to the linear system as will be explained shortly. In order to distinguish
between the standard HDG local solver within a single element and HDG applied to the whole
domain tesselation Th, the superscript ‘e’ has been replaced by Th where appropriate. The
’macro element’ form yields a system(

qTh ,∇v
)
Th

= (f, v)Th +
〈
nTh · q̃Th , v

〉
∂Tn (17)(

qTh ,w
)
Th

=
(
∇uTh ,w

)
Th
−
〈
uTh ,w · nTh

〉
∂Th

+
〈
λ,w · nTh

〉
∂Th

(18)

The numerical approximation uTh belongs to the space V Thh and qTh lies in ΣThh , which are
defined as

V Th := {v ∈ C0(Ω) : v|Ke ∈ P (Ke) ∀Ke ∈ Th},
ΣTh := {w ∈ [L2(Ω)]2 : w|Ke ∈ Σ(Ke) ∀Ke ∈ Th}.

Using the definition of the trace flux

q̃Th(x) = qTh(x)− τ(uTh(x)− λ(x))nTh on ∂Th,

and the fact that the integral over Th can be written as a sum of integrals over all Ke ∈ Th,
equations (17) and (18) become∑

Ke∈Th

(∇v, qe)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v,ne · qe〉∂Ke + τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v, ue〉∂Ke

−τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v, λ〉∂Ke =
∑

Ke∈Th

(v, f)Ke (19)

∑
Ke∈Th

(w, qe)Ke +
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue,w · ne〉∂Ke

−
∑

Ke∈Th

(w,∇ue)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈w · ne, λ〉∂Ke = 0 (20)

A continuous Galerkin solver with Dirichlet data prescribed by the variable λ can be obtained
by eliminating the flux variable from the system and reverting back to primal form for the
unknown u. The mass matrix which appears in the second equation of the local solver
after evaluating the dot product

(
qTh ,w

)
Th

is now block-diagonal as a consequence of the

discontinuous nature of the discrete flux qTh , hence the elimination of qTh from the system can
be performed element-wise. The matrix equivalent of (19), (20) written for a single element
Ke ∈ Th adjacent to Dirichlet boundary reads

∑
k=1,2

(De
k)
T −

Ne
b∑

l=1

Ẽe
kl

 q̂e
k

+

Ne
b∑

l=1

τ e,l
[
Ee
l û
e − Fe

l λ̂
σ(e,l)

]
= fe (21)

Meq̂e
k

=

(De
k)−

Ne
b∑

l=1

Ẽe
kl

 ûe +

Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)
k = 1, 2 (22)

8

The discrete flux q̂e
k

expressed from (22) and substituted in equation (21) yields element-wise
contribution to the left- and right-hand side of the linear system which can be expressed as

∑
k=1,2

{
(De

k)
T
(
Me
)−1

De
k︸ ︷︷ ︸

1

−
(Ne

b∑
l=1

Ẽe
kl

)(
Me
)−1

De
k︸ ︷︷ ︸

2a

}
ûe

−
∑
k=1,2

{
(De

k)
T
(
Me
)−1
(Ne

b∑
l=1

Ẽe
kl

)
︸ ︷︷ ︸

2b

+

(Ne
b∑

l=1

Ẽe
kl

)(
Me
)−1
(Ne

b∑
l=1

Ẽe
kl

)
︸ ︷︷ ︸

3

}
ûe +

Ne
b∑

l=1

τ (e,l)Ee
l û
e

︸ ︷︷ ︸
4

=f e +
∑
k=1,2

(Ne

b∑
l=1

Ẽe
kl − (De

k)
T

)(
Me
)−1
(Ne

b∑
l=1

F̃e
klλ̂

σ(e,l)
)+

Ne
b∑

l=1

τ (e,l)Fe
l λ̂
σ(e,l)

Term 1 on the left-hand side is a discrete Laplacian that arises from the standard continuous
Galerkin discretization, which would typically be accompanied by the forcing term f e on the
right hand side. The additional numbered terms represent a weak imposition of Dirichlet
boundary data represented by λ̂. (More details on weak Dirichlet boundary conditions can be
found in our paper [4]). This new expression therefore denotes a modification of the existing
matrix system and right hand side, which makes implementation relatively straightforward.
The matrix expressions 2a , 2b , 3 and 4 appear in the formulation only for elements Ke

containing at least one edge on Dirichlet boundary of Ω. In addition, expressions 3 and

4 are symmetric as a consequence of symmetry of Ẽe
kl,E

e
l and

(
Me
)−1

. The products 2a

and 2b are transposes of each other, hence their sum is again symmetric. The modifications
to the symmetric discrete Laplacian therefore preserve symmetry of the discrete weak form,
meaning that efficient iterative solvers such as the conjugate gradient method can be used to
obtain solutions.

5.1 Convergence rates comparison: weak vs. strong boundary conditions

The convergence rates were verified on a scalar Helmholtz problem with nonzero Dirichlet
boundary conditions

∇2u− λu = f (23)

in a square domain (−1, 1)2 with λ = 1 and f(x, y) chosen so that the exact solution is of the
form

u(x, y) = sin(10πx) cos(10πy) + x+ y (24)

Figure 4 compares the L2 error for polynomial orders varying between 1 and 20 when the
Dirichlet boundary conditions are imposed strongly and weakly. The behaviour of both strong
and weak methods produces nearly identical errors up to p = 12 on the structured grid and
p = 11 on triangles. With further increase of polynomial degree of the basis, however, the
weak errors fail to further decrease. The observed differences are not surprising, because
the HDG-based algorithm only penalizes the solution in order to satisfy boundary conditions,
while the strong implementation completely eliminates known degrees of freedom and moves
them to the right-hand side of the linear system, thus fulfilling the boundary conditions

9

0 5 10 15 20
Polynomial order

10−13

10−11

10−9

10−7

10−5

10−3

10−1

L
2

er
ro

r

Weak BC
Strong BC

(a) Convergence to exact solution, strong vs. weak
boundary conditions on unstructured triangular
mesh.

0 5 10 15 20
Polynomial order

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

L
2

er
ro

r

Weak BC
Strong BC

(b) Convergence to exact solution, strong vs. weak
boundary conditions on quadrilateral mesh.

Figure 4: Convergence to the exact solution in L2 norm.

exactly by construction. Furthermore, the stiffness matrix with weak constraints is larger,
hence less favourably conditioned and round-off errors in the linear solver become important
as the error values approach the limits of finite-precision arithmetic on given machine.

6 Expected Performance

6.1 Cost in terms of FLOPs

We assume that the discrete Poisson problem is solved in two stages, both of which will
significantly contribute to the overall CPU time spent in the solver. The stages are:

1. Assembly and solution of statically condensed system. This step involves pro-
cessing unknowns on entity boundaries, where ’entity’ would be each single element in
the context of continuous and hybrid discontinuous Galerkin methods and one mesh
patch (a group of elements spanned by a continuous polynomial basis) in the combined
continuous-discontinuous Galerkin method.

The main difference between CG and HDG is that in the continuous case, trace variables
are identical to variables located on element boundaries and are shared by neighbour-
ing elements. The HDG method, on the other hand, introduces an additional hybrid
variable, thus requiring more memory storage. This variable is not globally continuous,
hence degrees of freedom on face boundaries are duplicated. As a consequence, the HDG
interior solve on each element has to process a slightly larger local system.

2. Interior solve. Given solution on entity boundary, the solution in entity interior is
reconstructed during this stage. Interior solve involves the inverse of a potentially large
matrix.

Setup costs (for example precomputing and storing the matrix inverses needed in interior
solve above) are not taken into account.

10

Domain Description

We assume a structured grid divided into P ×P patches, each patch consisting of N1D
e ×N1D

e

elements (figure 5). Each element has a polynomial basis of degree p, i.e. (p + 1) × (p + 1)
degrees of freedom. These may or may not be shared with neighbouring elements, depending

Figure 5: Idealized mesh divided into P × P patches, each patch containing N1D
e × N1D

e

elements of order p.

on the setup (CG vs. DG vs. HDG) and global continuity of the polynomial bases. The
number of inter-patch edges (red edges in figure 5) is

N edges
interpatch = 2P · (P − 1) ·N1D

e ,

and each patch contains N edges
patch interior edges, with

N edges
patch = 2N1D

e · (N1D
e − 1),

see figure 6.

Figure 6: Interior edges (blue) within a patch.

11

Stage I: Solution of Statically Condensed System

Continuous Galerkin

Since the total number of elements along each side of the mesh is P · N1D
e in 2D, the to-

tal number of unknowns before static condensation (assuming Dirichlet boundary condition
everywhere) is

Ndof
CG =

(
P ·N1D

e · p− 1
)2
.

This is also the rank of global system matrix. In case of one-level static condensation, the
global system has the form [

Mb Mc

MT
c Mi

] [
xb
xi

]
=

[
f b
f i

]
and the rank of Mb is approximately (counting the boundary modes on the skeleton of the
mesh) equal to

Nλ
CG = (N edges

interpatch + P ·N edges
patch) · p = (2P · (P − 1) ·N1D

e + P · 2N1D
e · (N1D

e − 1)) · p
= 2PN1D

e (P +N1D
e − 2)p.

The remaining values of u in element-interior degrees of freedom can be obtained by inverting
(P · N1D

e)2 local matrices of rank p − 1. This means that the total cost of solving the CG
problem is

CCG = O
(
cgsolve(PN1D

e (P +N1D
e)p)

)
+ (PN1D

e)2 · O
(
(p− 1)3

)
,

where cgsolve(n) is the cost function of solving a sparse system of rank n with conjugate
gradients. The cost of the second term is small if the blocks of Mi are inverted and stored
during setup phase. The second term in the estimate assumes that the inverse of each diagonal
block of Mi costs as much as Gauss elimination/LU decomposition of a matrix of rank p− 1,
which has cubic time complexity.

HDG

The discrete transmission condition (14) generates a sparse system of rank

Nλ
HDG = (N edges

interpatch + P ·N edges
patch) · (p+ 1) = (2P (P − 1)N1D

e + P · 2N1D
e (N1D

e − 1)) · (p+ 1)

= 2PN1D
e (P +N1D

e − 2)(p+ 1).

In addition, we need to invert (PN1D
e)2 local systems ∈ R(p+1)×(p+1) as in the CG case.

The backsolve is more expensive however, because we have d mixed variables q1, . . . qd in d
dimensions. The element local inversion can be again precomputed and stored during setup.

The overall cost of solving for all unknowns scales as

CHDG = O
(
cgsolve(PN1D

e (P +N1D
e)(p+ 1))

)
+ (PN1D

e)2 · O
(
(p+ 1)3

)
.

12

Combined CG-DG Solver

The number of hybrid degrees of freedom on interfaces between patches is

Nλ
CG−DG = N edges

interpatch(p+ 1) = 2P (P − 1)N1D
e (p+ 1).

Each patch contains approximately (N1D
e p)2 interior degrees of freedom, hence the total cost

is
CCG−DG = O

(
cgsolve(P 2N1D

e (p+ 1))
)

+ P 2 · O
(
(N1D

e p)3
)
.

In the limiting case where each patch coincides with one single element (i.e. P := N1D
e and

N1D
e = 1), the three estimates CCG, CHDG and CCG−DG predict the same asymptotic cost.

Cost of Solving the Statically Condensed System

Standard HDG Algorithm

The cost of linear solve in the PCG (preconditioned conjugate gradient) solver will mainly
depend on the cost of evaluating matrix-vector multiplications. For a matrix of rank n, this
cost is O(n2). Nektar++ solves the statically condensed system in matrix-free manner by
performing the above matrix-vector multiplications element-wise and then summing them
together. Suppose the (structured) mesh consists of quadrilaterals in 2D and hexahedra
in 3D. Furthermore, we will assume that the triangular mesh is obtained by splitting each
quadrilateral into 2 triangles and tetrahedral mesh is created by dividing each hexahedron
into 6 tetrahedra.

The number of trace degrees of freedom of one element is

• 3 · (p+ 1) for triangles

• 4 · (p+ 1) for quadrilaterals

• 4 · (p+1)(p+2)
2 for tetrahedra

• 6 · (p+ 1)2 for hexahedra

Under this assumption, one matrix-vector multiplication for the whole system (but performed
on element-wise basis) will take

• O
(
2(N1D

e)2
[
3 · (p+ 1)

]2)
= O

(
18(N1D

e)2(p+ 1)2
)

operations on triangles in 2D

• O
(
(N1D

e)2
[
4 · (p+ 1)

]2)
= O

(
16(N1D

e)2(p+ 1)2
)

operations on quadrilaterals in 2D

• O
(
6(N1D

e)3
[
2·(p+1)(p+2)

]2)
= O

(
24(N1D

e)3(p+1)2(p+2)2
)

operations on tetrahedra
in 3D

• O
(
(N1D

e)3
[
6 · (p+ 1)2

]2)
= O

(
36(N1D

e)3(p+ 1)4
)

operations on hexahedra in 3D

HDG Algorithm Applied to Groups of Continuously Connected Elements

Now suppose that the trace system is built between patches and each patch has N1D
e ×N1D

e

quadrilaterals in 2D and N1D
e ×N1D

e ×N1D
e hexahedra in 3D. The number of unknowns on

the trace of one patch now becomes

13

• 4 ·N1D
e · p in 2D (triangles and quadrilaterals) and

• 6 · (N1D
e)2 · p2 in 3D (tetrahedra and hexahedra),

which will require

• O
(
16(N1D

e)2 · p2
)

operations per matrix-vector multiplication in 2D and

• O
(
36(N1D

e)4 · p4
)

operations in 3D

This means that the PCG algorithm in CG-HDG case scales one order worse when
measured in terms of number of elements along patch face

(
O
(
(N1D

e)4
))

than the
standard HDG algorithm

(
O
(
(N1D

e)3
))

.

Remark 1. Note that the number on the surface of the patch is the same for triangles and
quadrilaterals and for tetrahedra and hexahedra, respectively. For a continuous expansion, the
number of DOFs on one quadrilateral face of a hexahedron is (p + 1)2, and 2 · (p+1)(p+2)

2 −
(p+ 1) = (p+ 1)2 for two triangles covering the same quadrilateral face.

5 10 15 20
p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

d
g
e
m

v
 c

o
st

 [
o
p
e
ra

to
rs

]

1e7

HDG, N 1D
e = 50

HDG, triangles
HDG, quadrilaterals
CG-DG, tri/quad

5 10 15 20
p

0

1

2

3

4

5

d
g
e
m

v
 c

o
st

 [
o
p
e
ra

to
rs

]

1e10

HDG, N 1D
e = 10

HDG, tetrahedra
HDG, hexahedra
CG-DG, tet/hexa

Figure 7: Asymptotic cost of matrix-vector multiplication measured by operation counts for
HDG and combined CG-HDG methods.

Stage II: Interior Solve

The reconstruction of interior degrees of freedom involves the solution of a linear system with
the matrix

Ae =

Ne
b∑

l=1

τ (e,l)Ee
l −De

1 −De
2(

De
1

)T
Me 0(

De
2

)T
0 Me

The superscript e no longer refers to a single element as was the case of HDG. For CG-HDG
method, all the blocks in A are a result of a continuous Galerkin discretization in the whole
partition/patch. The sparse matrix Ae is potentially large and its explicit inverse will be
dense, i.e. require significant storage.

14

The expensive interior solve together with increased operation count when invert-
ing the statically condensed system in 3D indicates that the benefit of reduced
communication pattern in continuous-discontinuous discretization might be out-
weighed by extra CPU cost and there is relatively little performance (if any) to
be gained by combining the continuous and discontinuous Galerkin discretization
into one hybrid solver.

6.2 Cost in terms of memory requirements

Stage I: Solution of Statically Condensed System

We again assume that the global system is solved by performing multiple PCG iterations,
where global matrix-vector multiply is executed in matrix-free fashion. For each elemental
multiplication, the data containing the input matrix and vector and resulting vector must be
loaded into processor cache. We discuss amount of data transferred for each method during
one PCG iteration here.

Continuous Galerkin

On triangles, one element contains 3 · p trace degrees of freedom (this is irrespective of global
continuity of the solution, because we perform the multiplication element-by element and
hence whether the DOFs are shared with neighbouring elements or not is irrelevant). The
elemental statically condensed matrix has rank (3 · p)2 and the amount of data to move in
and out of cache is therefore

(3 · p)2 + 2 · (3 · p) = 9p2 + 6p

(The term 2 · (3 · p) takes into account two vectors needed for elemental matrix-vector multi-
plication.) This is repeated for each element, and therefore the total number of floating-point
values transferred is

(2 ·N1D
e)(9p2 + 6p)

Repeating similar calculation for other element types, we arrive to the following estimates for
continuous Galerkin method and different element types:

• Triangles: NCG,tri = (2(N1D
e)2(9p2 + 6p) floating point values

• Quadrilaterals: NCG,quad = (N1D
e)2(16p2 + 8p) floating point values

• Tetrahedra: NCG,tet = (6 ·N1D
e)3

(
(2p(p+ 1))2 + 4p(p+ 1)

)
floating point values

• Quadrilaterals: NCG,hex = (N1D
e)3

(
(6p2)2) + 12p2)

)
floating point values

6.2.1 Discontinuous Galerkin

Data for HDG are very similar with the exception that the trace values are discontinuous,
which means that the elemental matrices are slightly bigger:

• Triangles: NHDG,tri = (2(N1D
e)2(9(p+ 1)2 + 6(p+ 1)) floating point values

• Quadrilaterals: NHDG,quad = (N1D
e)2(16(p+ 1)2 + 8(p+ 1)) floating point values

15

• Tetrahedra: NHDG,tet = (6 ·N1D
e)3

(
(2(p+ 1)(p+ 2))2 + 4(p+ 1)(p+ 2)

)
floating point

values

• Quadrilaterals: NHDG,hex = (N1D
e)3

(
(6(p+ 1)2)2 + 12(p+ 1)2

)
floating point values

6.2.2 CG-HDG

The hybrid CG-HDG method has a system matrix of rank (4 ·N1D
e · p), which means that the

number of floating point values involved in one matrix-vector multiply will be

NCG−HDG,2D = (4 ·N1D
e · p)2 + (8 ·N1D

e · p) = 16(N1D
e)2p2 + 8N1D

e p in 2D

and similarly in 3D, where the number of DOFs on patch surface is 6 · (N1D
e)2 · p2 :

NCG−HDG,3D = (6 · (N1D
e)2 · p2)2 + (12 · (N1D

e)2 · p2) in 3D.

Stage II: Interior Solve

Continuous Galerkin

The number of interior degrees of freedom in one high-order triangle is (p+1)(p+2)/2−3p =
(p− 2)(p− 1)/2 and we suppose that this is the rank of elemental Schur complement which
has to be inverted and stored. In the case of continuous Galerkin system, the element-interior
matrix, left- and right- hand side vectors hold

NCG,tri = ((p− 2)(p− 1)/2)2 + 2 ·
(
(p− 2)(p− 1)/2

)
This cost has to be multiplied by number of elements present in the mesh. Cost for different
element shapes is summarized below

• Triangles: NCG,tri = (2(N1D
e)2

[
((p−2)(p−1)/2)2 +(p−2)(p−1)

]
floating point values

• Quadrilaterals: NCG,quad = (N1D
e)2

[
(p− 1)2 + 2(p− 1)

]
floating point values

Discontinuous Galerkin

In HDG, each elements has its ’own’ DOFS not shared with the hybrid variable, hence ele-
mental matrices are again slightly bigger:

• Triangles: NHDG,tri = (2(N1D
e)2

[
((p + 1)(p + 2)/2)2 + (p + 1)(p + 2)

]
floating point

values

• Quadrilaterals: NHDG,quad = (N1D
e)2

[
(p+ 1)2 + 2(p+ 1)

]
floating point values

CG-HDG

The ’interior matrix’ is sparse, but involves all DOFS of the patch, whose count is approxi-
mately (N1D

e)2p2. The matrix and corresponding storage would then be

NCG−HDG,quad =
(
(N1D

e)2p2
)2

+ 2(N1D
e)2p2

Which is again orders of magnitude worse estimate than for CG and HDG.

16

7 Conclusion

This paper proposes a new method for combining the CG and HDG solvers and derives an
algorithm for the imposition of Dirichlet boundary conditions for elliptic PDEs of Helmholtz
type which enforces the constraints weakly, i.e. by amending the underlying weak form with
penalty terms instead of lifting known boundary values from the linear system.

The presented technique is conceptually based on hybrid Discontinuous Galerkin method,
but replaces the polynomial space typically used in element interiors (a finite element basis
defined in single element) by a piecewise continuous multi-element Galerkin expansion. We
demonstrate that the method is conceptually feasible and it combines some attractive features
of CG and HDG, but it fails to deliver the expected performance. Even if we stored the inverted
local solvers to effectively recover degrees of freedom located on each mesh partition, the cost
of assembly and solution of the discrete transmission condition in three dimensions remains
prohibitively expensive.

Acknowledgments

Martin Vymazal was supported by a European Commission Horizon 2020 project grant enti-
tled ExaFLOW: Enabling Exascale Fluid Dynamics Simulations (grant reference 671571).

References

[1] Douglas N Arnold, Franco Brezzi, Bernardo Cockburn, and L Donatella Marini. Uni-
fied analysis of discontinuous galerkin methods for elliptic problems. SIAM journal on
numerical analysis, 39(5):1749–1779, 2002.

[2] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. Unified Hybridiza-
tion of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second
Order Elliptic Problems. SIAM Journal on Numerical Analysis, 47(2):1319–1365, 2009.

[3] Robert M. Kirby, Spencer J. Sherwin, and Bernardo Cockburn. To CG or to HDG: A
comparative study. Journal of Scientific Computing, 51(1):183–212, 2011.

[4] Martin Vymazal, David Moxey, Spencer Sherwin, Chris Cantwell, and Robert M. Kirby.
On Weak dirichlet boundary conditions for elliptic problems in the continuous Galerkin
method. Journal of Scientific Computing, Submitted.

[5] Sergey Yakovlev, David Moxey, Robert M. Kirby, and Spencer J. Sherwin. To CG or to
HDG: A comparative study in 3D. Journal of Scientific Computing, 67(1):192–220, 2016.

17

	1 Motivation for combining CG and HDG
	2 Overview of the formulation of HDG method
	2.1 Continuous problem
	2.2 HDG interpolation spaces and discretization
	2.3 Approximation spaces
	2.4 Global formulation for HDG problem
	2.5 Local solvers in the HDG method
	2.6 Global problem for trace variable

	3 Discrete form of HDG local solver
	4 Combined Continuous-Discontinuous Formulation
	5 Continuous-Discontinuous Solver
	5.1 Convergence rates comparison: weak vs. strong boundary conditions

	6 Expected Performance
	6.1 Cost in terms of FLOPs
	6.2 Cost in terms of memory requirements
	6.2.1 Discontinuous Galerkin
	6.2.2 CG-HDG

	7 Conclusion

