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Abstract

We combine continuous and discontinuous Galerkin methods in the setting of a model diffu-

sion problem. Starting from a hybrid discontinuous formulation, we replace element interiors by

more general subsets of the computational domain – groups of elements that support a piecewise-

polynomial continuous expansion. This step allows us to identify a new weak formulation of

Dirichlet boundary condition in the continuous framework. We show that the boundary condition

leads to a stable discretization with a single parameter insensitive to mesh size and polynomial

order of the expansion. The robustness of the approach is demonstrated on several numerical

examples.
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1. Introduction

High-order methods, combined with unstructured grids, are now becoming increasingly pop-

ular in application areas such as computational fluid dynamics. They simultaneously provide

geometric flexibility and high-fidelity of flow solutions, whilst being able to utilize modern com-

puting hardware more effectively than traditional low-order methods [1]. These properties make5

high-order methods particularly attractive in various application areas such as Large-Eddy Sim-

ulations (LES) over complex industrial geometries [2], which can be used to gain detailed insight

into flow physics. Simulations such as these, which are based on the incompressible Navier-Stokes

equations, can be efficiently tackled using discretizations which employ high-order elements in

space and a time-splitting scheme [3] that involves the solution of four scalar elliptic equations for10

pressure and velocity components respectively. The cost of one time step in this scheme is then

largely determined by the amount of work needed to obtain the pressure field, which is defined as

a solution to a (frequently ill-conditioned) scalar elliptic Poisson equation.
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The difficulty in solving the governing equation for pressure is further increased when one

considers complex flow features, for example the formation and evolution of a wingtip vortex15

simulated by a high-order method (Figure 1). Under-integration of nonlinear terms in Navier-

Stokes equations introduces an aliasing error which may compromise the stability of the simulation

[4]. This is usually not problematic when the flow features are adequately resolved. Once the

buildup of aliasing errors becomes an issue, however, the stability of the solver is often compromised

in the vicinity of (wall) boundaries, where the introduction of boundary constraints into the20

discrete problem further degrades the conditioning of the stiffness matrix. This problem motivated

our search for a new formulation of boundary terms, which is proposed in this paper.

Figure 1: Implicit LES of a wingtip vortex using a high-order hp/spectral element solver. Reproduced from [2].

As noted by Hesthaven [5], in the context of hyperbolic conservation laws, if the requirement

to satisfy boundary conditions exactly (within machine accuracy) is relinquished and the only

requirement is that the boundary operator does not degrade the overall spatial accuracy of the25

discretization, a range of new techniques becomes possible. More specifically, our aim is to be able

to write the discrete form of the original differential equation as a sum of an interior term and one

or more boundary corrections which enforce the boundary conditions so that they are satisfied in

the convergence limit, but not necessarily from the first iteration of the linear solver.

Boundary conditions in the form of penalty terms can be incorporated into the variational30

form using the approach first described by Nitsche [6] and later on developed in a number of other

papers, for example in [7] or [8]. We compare its accuracy and performance with our method in

Section 5.2.

Other work on weak imposition of Dirichlet boundary conditions includes the contributions of

Bazilevs et al. [9, 10]. The authors used their formulation to solve an advection-diffusion problem35

and the incompressible Navier-Stokes equations with low-order stabilized finite element methods.

The Dirichlet constraints are incorporated directly into the variational form as Euler-Lagrange
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equations. In their paper [11], the authors note that the conditions render the simulation more

robust on coarse meshes where near-wall resolution is low. Building on their previous work, Evans

et al. [12] utilised Nitsche’s method because it allowed them to account for sharp boundary layers40

in a stable and consistent manner without having to directly resolve them. They in fact claim

that Nitsche’s method can be interpreted as a variationally consistent wall model (based upon

[9, 10, 11]).

Conceptually similar mechanisms can also be found in the works of Liakos [13], Liakos and

Caglar [14], Layton [15] and Urquiza et al. [16], where the discrete form of the governing law45

together with weak boundary conditions is again enforced either by Lagrange multipliers or by

penalizing certain components of the velocity field on wall boundaries. The existing body of work

differs from our contribution in terms of scope, however. We are interested in elliptic problems and

high-order Galerkin finite element methods, while the references cited above consider conservation

laws of advection-diffusion type and use low-order stabilized methods.50

High-order Navier-Stokes solvers on unstructured grids can be devised by considering one of

many methods of Galerkin type, each of which has specific advantages and drawbacks. The high-

order continuous Galerkin (CG) method [17], [18] is the oldest. Compared to its discontinuous

counterparts, the unknowns at element interfaces are not duplicated, as shown in Figure 2).

The CG solution can be accelerated by means of static condensation [19], [20], [21], [22], which55

produces a globally coupled system involving only those degrees of freedom on the mesh skeleton.

The element interior unknowns are subsequently obtained from the mesh skeleton data by solving

independent local problems that do not require any communication.

Figure 2: Distribution of unknowns for continuous and discontinuous Galerkin methods.

Discontinuous Galerkin (DG) methods [23], on the other hand, duplicate discrete variables on

element boundaries, thus decoupling mesh elements and requiring at most pairwise communication60

between them. This is at the expense of a larger linear system and more time spent in the linear

solver. Discontinuous discretization is therefore expected to scale better on parallel computers, but

the improved scaling is not necessarily reflected in significantly smaller CPU times when compared

to a CG solver. With regards to our work, many DG methods provide natural frameworks for the
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design of weak boundary conditions implemented by means of flux functions.65

Hybrid discontinuous Galerkin (HDG) methods [24] address the performance deficiencies of CG

by introducing an additional (hybrid) variable on the mesh skeleton. The hybrid degrees of freedom

determine the rank of the global system matrix and HDG therefore produces a statically condensed

system that is similar in size to the CG case. In contrast with CG, the static condensation in HDG

takes place by construction rather than being an optional iterative technique.70

The formulation used for Dirichlet boundary conditions in this paper was formally derived by

treating the whole domain triangulation as one element in HDG and by replacing the commonly

used polynomial basis in the element interior by a piecewise-polynomial and globally continuous

CG interpolant. While the mixed HDG system was our starting point, we eventually revert to

the primal form of the local solver which leads to a variational formulation for a scalar elliptic75

PDE obtained with continuous Galerkin method and augmented by additional terms responsible

for the enforcing of boundary constraints. These terms preserve the symmetry and positivity

of the discrete CG operator and thus constitute and attractive alternative to existing methods.

In summary, our goal is to capitalize on the properties seen when weakly imposing boundary

conditions (such as in Nitsche’s method [11, 12]) while leveraging the computational efficiencies80

seen in the Hybridized Discontinuous Galerkin Method [25, 26].

1.1. Outline

The paper is organized as follows. We first recall the mixed form of scalar elliptic problems

considered in this paper and its discretization by Hybridizable Discontinuous Method in Section 2.

In particular, we discuss the HDG local and global solvers which provide a natural framework for85

prescribing Dirichlet boundary conditions in a weak sense. Section 3 discusses the matrix form

of the HDG local solver in more detail and then proceeds to the description of weak Dirichlet

formulation in Section 4. Accuracy and convergence rates of the CG solver with weak boundary

conditions are compared with the classical strong boundary formulation in Section 5. This Section

also presents several test cases showcasing the behaviour of weak boundary conditions in a fluid dy-90

namics context. Before concluding the paper, the differences between our formulation and existing

penalty approaches for enforcing Dirichlet boundary conditions are discussed in Section 5.2.

2. Overview of the formulation of HDG method

We begin with a brief recap of the standard HDG formulation for a finite element mesh,

following a similar approach to that taken in [25] and [26]. For consistency, we have selected to95

use the notation in [25]. Formulation details omitted here for brevity can be found therein.
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Figure 3: Computational domain and its tesselation demonstrating notation used in the text. Although not

explicitly highlighted in the diagram, we assume that element edges/faces can be isoparametric.

2.1. Continuous problem

We seek the solution of a Poisson equation as a representative elliptic problem

−∇2u(x) = f(x) x ∈ Ω, (1)

u(x) = gD(x) x ∈ ∂ΩD,

n · ∇u(x) = gN (x) x ∈ ∂ΩN ,

on a domain Ω with Dirichlet (∂ΩD) and Neumann (∂ΩN ) boundary conditions, where ∂ΩD
⋃
∂ΩN =

∂Ω and ∂ΩD
⋂
∂ΩN = ∅. To formulate the HDG method, we consider a mixed form of (1) by

introducing an auxiliary variable q = ∇u:

−∇ · q = f(x) x ∈ Ω, (2)

q = ∇u(x) x ∈ Ω, (3)

u(x) = gD(x) x ∈ ∂ΩD, (4)

q · n = gN (x) x ∈ ∂ΩN . (5)

The gradient variable q is approximated together with the primal variable u, which contrasts with

the CG method and other discontinuous methods for (1).

2.2. HDG interpolation spaces and discretization100

We limit ourselves to two-dimensional problems for sake of simplicity, but the formal de-

scription remains unchanged in three dimensions. We assume that in the discrete setting, the

computational domain Ω is approximated by its tesselation Th consisting of non-overlapping and
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Figure 4: Index mappings relating edge and element ids.

conformal elements Ke such that for each pair of distinct indices ei 6= ej , K
ei ∩ Kej = ∅. The

symbol Γl denotes an interior edge of the tesselation Th, i.e. an edge Γl = K̄i ∩ K̄j where Ki
105

and Kj are two distinct elements of the tesselation. We say that Γl is a boundary edge of the

tesselation Th if there exists an element Ke such that Γl = Ke ∩ ∂Ω and the length of Γl is not

zero, as shown in Figure 3. The set of all internal edges is denoted by E0
h, while E∂h is a set of all

boundary edges. Their union Eh comprises of all mesh edges, Eh = E0
h ∪ E∂h .

In order to describe some terms in the HDG formulation, it is also useful to introduce mappings110

that relate elements to their local edges, as shown in Figure 4. Let ∂Ke
j be the j-th edge of element

Ke, and suppose that this is also the l-th edge Γl in the global edge numbering. Then we define

the local-to-global edge mapping σ by setting σ(e, j) = l so that we can write ∂Ke
j = Γσ(e,j). An

interior edge Γl is the intersection of the boundaries of two elements Ke and Kf , hence we set

η(l,+) = e and η(l,−) = f in order to be able to write Γl = ∂Kη(l,+) ∩ ∂Kη(l,−).115

2.3. Approximation spaces

The finite element spaces supported by the (two-dimensional) tesselation Th are defined as

follows:

Vh := {v ∈ L2(Ω) : v|Ke ∈ P(Ke) ∀Ke ∈ Th},

Σh := {w ∈ [L2(Ω)]2 : w|Ke ∈ Σ(Ke) ∀Ke ∈ Th},

Mh := {µ ∈ L2(Γ) : µ|Γl ∈ P(Γl) ∀Γl ∈ Γ},

where P(Γl) = SP (Γl) is the polynomial space over the standard segment

SP (Γl) = {sp : 0 ≤ p ≤ P, [x1(s), x2(s)] ∈ Γl, −1 ≤ s ≤ 1},

and P(Ke) is the space of polynomials of degree P defined on a standard region, which can either

be the standard triangle

P(Ke) = TP (Ke) = {ξp1ξqw : 0 ≤ p+ q ≤ P, [x1(ξ1, ξ2), x2(ξ1, ξ2)] ∈ Ke, −1 ≤ ξ1 + ξ2 ≤ 0},
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or standard quadrilateral

P(Ke) = QP (Ke) = {ξp1ξq2 : 0 ≤ p, q ≤ P, [x1(ξ1, ξ2), (x2(ξ1, ξ2)] ∈ Ke, −1 ≤ ξ1, ξ2 ≤ 1}.

Similarly Σ(Ke) = [TP (Ke)]2 or Σ(Ke) = [QP (Ke)]2. There is no requirement on global conti-

nuity of the expansion. This is also true for the trace space Mh: a discrete variable λ ∈ Mh is

multi-valued at every mesh vertex shared by multiple interior edges.

2.4. Global formulation for HDG problem120

Given an element K ∈ Th and two functions u, v ∈ L2(Th), we define their L2 scalar product

by

(u, v)Th =
∑
K∈Th

(u, v)K , where (u, v)K =

∫
K

uv dx.

Similarly, the L2 product of functions u and v that are square-integrable on element traces are

defined by:

〈u, v〉∂Th =
∑
K∈Th

〈u, v〉∂K where 〈u, v〉∂K =

∫
∂K

uv ds

The DG method seeks an approximation pair (uDG, qDG) to u and q, respectively, in the space

Vh ×Σh. The solution is required to satisfy the weak form of (2) and (3)

(
qDG,∇v

)
Th

= (f, v)Th +
〈
ne · q̃DG, v

〉
∂Th

(6)(
qDG,w

)
Th

= −
(
uDG,∇ ·w

)
Th

+
〈
ũDG,w · ne

〉
∂Th

(7)

for all (v,w) ∈ Vh(Ω) × Σh(Ω), where the numerical traces ũDG and q̃DG have to be suitably

defined in terms of the approximate solution (uDG, qDG). For details, we refer the reader to [24].

This choice of trace variables allows us to construct the discrete HDG system involving only trace

degrees of freedom ũDG. Once ũ is known, the element-interior degrees of freedom represented by

both the primal variable u and gradient q can be reconstructed from element-boundary values.125

We note that the element-interior variable u restricted to element traces is not equal to the

hybrid variable ũ, but only approximates it: due to the definition of approximation spaces Vh

and Mh, u must be continuous along element boundaries, while ũDG is allowed to have jumps in

element vertices.

2.5. Local solvers in the HDG method130

Assume that the function

λ := ũDG ∈Mh, (8)
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is given. Then the solution restricted to element Ke is a function ue, qe in P (Ke) ×Σ(Ke) that

satisfies the following equations:

(qe,∇v)Ke = (f, v)Ke + 〈ne · q̃e, v〉∂Ke (9)

(qe,w)Ke = − (ue,∇ ·w)Ke + 〈λ,w · ne〉∂Ke , (10)

for all (v,w) ∈ P (Ke) × Σ(Ke). For a unique solution of the above equations to exist, the

numerical trace of the flux must depend only on λ and on (ue, qe):

q̃e(x) = qe(x)− τ
(
ue(x)− λ(x)

)
ne on ∂Ke (11)

for some positive function τ . The analysis presented in [24] reveals that as long as τ > 0, its value

can be arbitrary without degrading the robustness of the solver. For the limiting value of τ →∞,

one obtains a statically condensed continuous Galerkin formulation. In this sense, τ plays the role

of a method selector as opposed to traditional penalty parameter used in Nitsche’s method, for

example.135

2.6. Global problem for trace variable

We denote by (Uλ,Qλ) and by (Uf ,Qf ) the solution to the local problem (9), (10) when λ = 0

and f = 0, respectively. Due to the linearity of the original problem (1) and its mixed form, the

solution satisfies

(uHDG, qHDG) = (Uλ,Qλ) + (Uf ,Qf ). (12)

In order to uniquely determine λ, we require that the boundary conditions be weakly satisfied and

the normal component of the numerical trace of the flux q̃ given by (11) is single valued, rendering

the numerical trace conservative.

We say that λ is the element of Mh such that

λ = Ph(gD) on ∂ΩD (13)

〈µ, q̃ · n〉∂T = 〈µ, gN 〉∂ΩN
, (14)

for all µ ∈ M0
h such that µ = 0 on ∂ΩD. Here Ph denotes the L2-projection into the space of140

restrictions to ∂ΩD of functions of Mh.

In the following, we consider ue(x), qe(x) = [q1, q2]T and λl(x) to be finite expansions in terms

of basis functions φej(x) for the expansions over elements and the basis ψlj(x) over the traces of

the form:

ue(x) =

Neu∑
j=1

φej(x)ûe[j] qek(x) =

Neq∑
j=1

φej(x)q̂e
k
[j] λl(x) =

N lλ∑
j=1

ψlj(x)λ̂
l
[j]
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3. Discrete form of HDG local solver

We now define several local matrices stemming from standard Galerkin formulation, where

scalar test functions ve are represented by φei (x), with i = 1, . . . , Ne
u.

Dek[i, j] =

(
φei ,

∂φej
∂xk

)
Ke

Me[i, j] =
(
φei , φ

e
j

)
Ke

Eel [i, j] =
〈
φei , φ

e
j

〉
∂Ke

l

Ẽekl[i, j] =
〈
φei , φ

e
jn
e
k

〉
∂Ke

l

Fel [i, j] =
〈
φei , ψ

σ(e,l)
j

〉
∂Ke

l

F̃ekl[i, j] =
〈
φei , ψ

σ(e,l)
j nek

〉
∂Ke

l

If the trace expansion matches the expansions used along the edge of the elemental expansion and

the local coordinates are aligned, that is ψ
σ(e,l)
i (s) = φk(i)(s) then Eel contains the same entries as

Fel and similarly Ẽekl contains the same entries as F̃ekl.145

Inserting the finite expansions of the trial functions into equations (9) and (10), and using the

definition of the flux (11) yields the matrix form of local solvers

∑
k=1,2

(Dek)T −
Neb∑
l=1

[
Ẽekl
] q̂e

k
+

Neb∑
l=1

τe,l
[
Eel û

e − Fel λ̂
σ(e,l)

]
= fe (15)

Meq̂e
k

= −(Dek)T ûe +

Neb∑
l=1

F̃eklλ̂
σ(e,l)

k = 1, 2 (16)

The global equation for λ can be obtained by discretizing the transmission condition (14). We

introduce local element-based and edge-based matrices

Fl,e[i, j] =
〈
ψli, φ

e
j

〉
Γl

'
F
l,e

k [i, j] =
〈
ψli, φ

e
jn
e
k

〉
Γl

Ḡl[i, j] =
〈
ψli, ψ

l
j

〉
Γl

and define

gl
N

[i] =
〈
gn, ψ

l
i

〉
Γl

⋂
∂ΩN

.

The transmission condition in matrix form is then

[
'
F
l,e

1

'
F
l,e

2

] q̂e
1

q̂e
2

+

[
'
F
l,f

1

'
F
l,f

2

] q̂f
1

q̂f
2

+ (τe,i + τf,j)Ḡlλ̂
l − τe,iF̄l,eue − τf,jF̄l,fuf = gl

N
,

where we are assuming that l = σ(e, i) = σ(f, j).

We see that the transmission condition can be constructed from elemental contributions. In

Section 4 of [25], it was shown how to use the elemental local solvers given by the equations above

to obtain a matrix equation for λ only. Due to space considerations, we refer the reader to [25]

for further details.150
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4. Continuous finite elements with weak Dirichlet boundary conditions

With the standard HDG formulation now outlined, we investigate how this approach can be

applied to derive a weak Dirichlet boundary condition implementation for a continuous Galerkin

problem. Since the HDG local solver naturally imposes a weak boundary condition on a single

element, we choose to apply the HDG local solver to a single ‘macro element’ that covers the whole155

domain tesselation Th. The term ‘macro element’ in this setting denotes a conformal triangula-

tion (as described in section 2) which supports a piecewise polynomial expansion, as is generally

common in Galerkin methods.

We start again from the weak mixed problem (9), (10), but integrate the second term in the

flux equation (10) by parts once again. This modified flux form allows for a symmetric boundary

contribution to the linear system as will be explained shortly. In order to distinguish between the

standard HDG local solver within a single element and HDG applied to the whole domain tesselation

Th, the superscript ‘e’ has been replaced by Th where appropriate. The ’macro element’ form yields

a system (
qTh ,∇v

)
Th

= (f, v)Th +
〈
nTh · q̃Th , v

〉
∂Tn

(17)(
qTh ,w

)
Th

=
(
∇uTh ,w

)
Th
−
〈
uTh ,w · nTh

〉
∂Th

+
〈
λ,w · nTh

〉
∂Th

(18)

The numerical approximation uTh belongs to the space V Thh and qTh lies in ΣThh , which are defined

as

V Th := {v ∈ C0(Ω) : v|Ke ∈ P (Ke) ∀Ke ∈ Th},

ΣTh := {w ∈ [L2(Ω)]2 : w|Ke ∈ Σ(Ke) ∀Ke ∈ Th}.

Using the definition of the trace flux

q̃Th(x) = qTh(x)− τ(uTh(x)− λ(x))nTh on ∂Th,

and the fact that the integral over Th can be written as a sum of integrals over all Ke ∈ Th,

equations (17) and (18) become∑
Ke∈Th

(∇v, qe)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v,ne · qe〉∂Ke + τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v, ue〉∂Ke

−τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v, λ〉∂Ke =
∑

Ke∈Th

(v, f)Ke (19)

∑
Ke∈Th

(w, qe)Ke +
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue,w · ne〉∂Ke

−
∑

Ke∈Th

(w,∇ue)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈w · ne, λ〉∂Ke = 0 (20)
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A continuous Galerkin solver with Dirichlet data prescribed by the variable λ can be obtained by

eliminating the flux variable from the system and reverting back to primal form for the unknown

u. The mass matrix which appears in the second equation of the local solver after evaluating the

dot product
(
qTh ,w

)
Th

is now block-diagonal as a consequence of the discontinuous nature of the

discrete flux qTh , hence the elimination of qTh from the system can be performed element-wise.

The matrix equivalent of (19), (20) written for a single element Ke ∈ Th adjacent to Dirichlet

boundary reads

∑
k=1,2

(Dek)T −
Neb∑
l=1

Ẽekl

 q̂e
k

+

Neb∑
l=1

τe,l
[
Eel û

e − Fel λ̂
σ(e,l)

]
= fe (21)

Meq̂e
k

=

(Dek)−
Neb∑
l=1

Ẽekl

 ûe +

Neb∑
l=1

F̃eklλ̂
σ(e,l)

k = 1, 2 (22)

The discrete flux q̂e
k

expressed from (22) and substituted in equation (21) yields element-wise

contribution to the left- and right-hand side of the linear system which can be expressed as

∑
k=1,2

{
(Dek)T

(
Me
)−1Dek︸ ︷︷ ︸

1

−
(Neb∑
l=1

Ẽekl
)(

Me
)−1Dek︸ ︷︷ ︸

2a

}
ûe

−
∑
k=1,2

{
(Dek)T

(
Me
)−1
(Neb∑
l=1

Ẽekl
)

︸ ︷︷ ︸
2b

+

(Neb∑
l=1

Ẽekl
)(

Me
)−1
(Neb∑
l=1

Ẽekl
)

︸ ︷︷ ︸
3

}
ûe +

Neb∑
l=1

τ (e,l)Eel û
e

︸ ︷︷ ︸
4

=fe +
∑
k=1,2


(Neb∑
l=1

Ẽekl − (Dek)T
)(

Me
)−1
(Neb∑
l=1

F̃eklλ̂
σ(e,l)

)+

Neb∑
l=1

τ (e,l)Fel λ̂
σ(e,l)

Term 1 on the left-hand side is a discrete Laplacian that arises from the standard continuous

Galerkin discretization, which would typically be accompanied by the forcing term fe on the right160

hand side. This new expression therefore denotes a modification of the existing matrix system and

right hand side, which makes implementation relatively straightforward. The matrix expressions

2a , 2b , 3 and 4 appear in the formulation only for elements Ke containing at least one edge

on Dirichlet boundary of Ω. In addition, expressions 3 and 4 are symmetric as a consequence of

symmetry of Ẽekl,Eel and
(
Me
)−1

. The products 2a and 2b are transposes of each other, hence165

their sum is again symmetric. The modifications to the symmetric discrete Laplacian therefore

preserve symmetry of the discrete weak form, meaning that efficient iterative solvers such as the

conjugate gradient method can be used to obtain solutions.

When the domain trace λ and forcing term f are both zero, the bilinear forms (19), (20) yield

a homogeneous linear system with a regular matrix. This can be shown by testing the two forms
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with v = u and w = q:∑
Ke∈Th

(∇ue, qe)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue,ne · qe〉∂Ke + τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue, ue〉∂Ke = 0

∑
Ke∈Th

(qe, qe)Ke +
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue, qe · ne〉∂Ke −
∑

Ke∈Th

(qe,∇ue)Ke = 0

Their sum ∑
Ke∈Th

(qe, qe)Ke + τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue, ue〉∂Ke = 0

has a unique solution q = 0 and u = 0 provided τ > 0. This means that the CG system with

weakly imposed Dirichlet boundary conditions is uniquely solvable.170

5. Results

In this section, we apply the weak Dirichlet boundary conditions to various elliptic problems.

We demonstrate that this technique preserves the expected convergence properties of high-order

methods, and then apply it to a standard fluid dynamics test case in order to showcase its use in

a more realistic application.175

5.1. Convergence of continuous Galerkin solver with weak boundary conditions

We first present a straightforward evaluation of the convergence properties of weakly imposed

Dirichlet boundary conditions on a scalar Helmholtz problem

∇2u− λu = f (23)

in a square domain (−1, 1)2 with λ = 1 and f(x, y) chosen so that the exact solution is of the

form

u(x, y) = sin(10πx) cos(10πy) + x+ y (24)

Two meshes were considered: a structured Cartesian grid and an unstructured mesh consisting of

triangles. Figure 6 compares the L2 error for polynomial orders varying between 1 and 20 when

the Dirichlet boundary conditions are imposed strongly and weakly. The behaviour of both strong

and weak methods produces nearly identical errors up to p = 12 on the structured grid and p = 11180

on triangles. With further increase of polynomial degree of the basis, however, the weak errors

fail to further decrease. The observed differences are not surprising, because the HDG-based

algorithm only penalizes the solution in order to satisfy boundary conditions, while the strong

implementation completely eliminates known degrees of freedom and moves them to the right-

hand side of the linear system, thus fulfilling the boundary conditions exactly by construction.185

Furthermore, the stiffness matrix with weak constraints is larger, hence less favourably conditioned
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Figure 5: Meshes for Helmholtz convergence test.
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(a) Convergence to exact solution, strong vs. weak

boundary conditions on unstructured triangular mesh.
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Figure 6: Convergence to the exact solution in L2 norm.

and round-off errors in the linear solver become important as the error values approach the limits

of finite-precision arithmetic on a given machine.

5.2. Comparison with classical penalty techniques

We now provide a comparison of our method against an existing technique for imposing weak

boundary conditions. The main motivation for this example is to highlight a known drawback

of the classic formulation: that the penalty parameter τN is problem-dependent. A classical

penalty approach for boundary conditions in finite element methods is due to Nitsche [6]. Consider

a Poisson equation

−∇2u(x) = f(x) x in Ω

u(x) = gD(x) x ∈ ∂Ω,

13



Multiplying both sides of the equation by a test function v and adding a term 〈u− gD,∇v · n〉∂Ω

which should vanish for u satisfying the boundary condition yields

(∇u,∇v)Ω − 〈∇u · n, v〉∂Ω − 〈u− gD,∇v · n〉∂Ω = (f, v)Ω

A coercive bilinear form can be obtained by adding a penalty term τN 〈u− gD, v〉∂Ω which should

again be equal to zero for the exact solution. Nitsche’s method is therefore defined as: find uh ∈ Vh
such that

B(uh, v) = F(v) ∀v ∈ Vh, (25)

where

B(u, v) = (∇u,∇v)Ω − 〈v,∇u · n〉∂Ω − 〈u,∇v · n〉∂Ω + τN 〈u, v〉∂Ω ,

F(v) = (f, v)Ω − 〈g,∇v · n〉∂Ω + τN 〈g, v〉∂Ω

and

Vh := {v ∈ H1(Ω) : v|Ke ∈ P (Ke) ∀Ke ∈ Th}.

The main drawback of the above formulation is that the penalty parameter τN is problem-190

dependent; estimates are discussed in more detail in papers [7] or [8].

To demonstrate the differences in behaviour of (25) and our method in a concrete setting, we

solve a two-dimensional Laplace problem with exact solution given by

u = sin(10πx) cos(10πy) + x+ y, (26)

i.e. the same exact solution as in Section 5.1. The numerical approximation was represented

by Lagrange finite elements with polynomial degree varying between 1 and 7 and we solved the

underlying linear system by a preconditioned conjugate gradient (PCG) method with algebraic

multigrid as preconditioner. Each computation was required to reach a relative tolerance threshold195

of 10−9.

The results summarized in Table 1 show that the weak boundary algorithm has little sensitivity

to values of τ with respect to the obtained L2 errors. Large values of the penalty parameter help

reduce the number of PCG iterations by approximately 10%. Nitsche’s method, on the other

hand, yields larger variations in L2 errors when the penalty parameter is changed, and this can200

be observed even for low orders. Too low values of τN initially lead to larger errors and with

increasing p eventually prevent the method from converging.

The situation is different when an anisotropic mesh such as the one depicted in Figure 7 is

considered. Despite the fact that errors computed with weak boundary conditions are now larger,

the formulation remains stable and yields consistent results across a range of values of τ .205

Nitsche’s method, however, lacks in robustness in this case. Table 2b contains two different

values of stabilization parameter τ for each polynomial order: the first is chosen as the smallest

14



Value of τ in weak BCs Value of τN in Nitsche’s method

10−6 1 106 106 108

p NAMG ‖e‖L2
NAMG ‖e‖L2

NAMG ‖e‖L2
NAMG ‖e‖L2

NAMG ‖e‖L2

1 17 3.15 · 10−1 17 3.15 · 10−1 15 3.29 · 10−1 15 4.18 · 10−1 14 4.15 · 10−1

2 23 4.51 · 10−2 23 4.51 · 10−2 21 4.66 · 10−2 22 5.42 · 10−2 20 5.25 · 10−2

3 35 2.90 · 10−3 35 2.89 · 10−3 31 2.47 · 10−3 32 8.68 · 10−3 29 5.06 · 10−3

4 49 6.34 · 10−4 49 6.34 · 10−4 46 6.39 · 10−4 47 1.17 · 10−2 42 6.79 · 10−4

5 66 1.45 · 10−4 66 1.45 · 10−4 61 1.54 · 10−4 – – 55 1.64 · 10−4

6 95 1.06 · 10−5 95 1.06 · 10−5 87 1.09 · 10−5 – – 79 5.04 · 10−5

7 141 2.08 · 10−6 141 2.08 · 10−6 128 2.19 · 10−6 – – 116 5.17 · 10−5

Table 1: Iterative convergence and L2 errors for different values of penalty parameters in weak boundary conditions

and Nitsche’s method. Missing entries in the table indicate cases where Nitsche’s algorithm did not converge.

NPMG represents the number of iterations in preconditioned conjugate gradient solver using an algebraic multigrid

solver as preconditioner and ‖e‖L2 is the obtained L2 error norm.
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Figure 7: Anisotropic mesh of a unit square.
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power of 10 for which the method converged, the second is then equal to the first multiplied by

105. This is to demonstrate that not even a significant increase of the stabilization parameter

helps reduce the error.

Value of τ in weak BCs

10−6 1 106

p NAMG ‖e‖L2
NAMG ‖e‖L2

NAMG ‖e‖L2

1 19 3.73 · 10−1 19 3.73 · 10−1 19 3.73 · 10−1

2 37 8.44 · 10−2 37 8.44 · 10−2 37 8.44 · 10−2

3 57 1.34 · 10−2 57 1.34 · 10−2 57 1.34 · 10−2

4 81 3.44 · 10−3 81 3.44 · 10−3 81 3.44 · 10−3

5 112 6.84 · 10−4 112 6.84 · 10−4 112 6.84 · 10−4

6 166 1.24 · 10−4 166 1.24 · 10−4 166 1.24 · 10−4

7 252 2.28 · 10−5 252 2.28 · 10−5 252 2.28 · 10−5

(a) Iterative convergence and L2 errors for different values of penalty

parameters in weak boundary conditions on anisotropic mesh.

p τN NAMG ‖e‖L2

1 1014 18 1102.71

1 1019 14 927.93

2 1015 30 22.76

2 1020 22 22.53

3 1015 47 55.57

3 1020 32 54.17

4 1015 64 3.05

4 1020 46 2.89

5 1016 90 1.53

5 1021 58 1.52

(b) Iterative convergence and

L2 errors for Nitsche’s method

on anisotropic mesh.

Table 2: Performance of Nitsche’s method and weak boundary conditions on anisotropic mesh.

210

5.3. Navier-Stokes Results: NACA 6412

The incompressible flow past a NACA6412 airfoil was used to evaluate the performance of

weak boundary conditions when computing derived quantities such as aerodynamic forces. The

airfoil is placed in the flow with angle of attack α = 15◦ and the Reynolds number based on chord

length is Re = 500. No-slip condition on airfoil surface was imposed weakly, while inlet values215

were prescribed using the classical strong algorithm. The simulation ran for 20,000 time steps

with ∆t = 5 × 10−3 using a velocity correction scheme implemented in the open-source library

Nektar++ [27]. The obtained flow field at t = 10 is plotted in Figure 8 for both strong and weak

boundary conditions. Note that the flow fields look visually identical; however, the legends indicate

the minor differences incurred to the differences in the imposition of the boundary conditions.220

We compared lift and drag computed on the same mesh using a modal expansion with degrees

4 and 8 (Figure 9). In both cases, the forces computed with weak and strong approach are in

excellent agreement.
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Figure 8: Viscous incompressible flow past NACA airfoil: velocity magnitude obtained with strong Dirichlet bound-

ary conditions imposed on the airfoil surface (top) and with weak boundary conditions (bottom).
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Figure 9: Viscous incompressible flow past NACA airfoil: drag and lift on P4 elements (top) and P8 elements

(bottom).

6. Conclusion

This paper proposes a new method for the imposition of Dirichlet boundary conditions for225

elliptic PDEs of Helmholtz type which enforces the constraints weakly, i.e. by amending the

underlying weak form with penalty terms instead of lifting known boundary values from the linear

system.

The presented technique is conceptually based on hybrid Discontinuous Galerkin method, but

replaces the polynomial space typically used in element interiors (a finite element basis defined230

in single element) by a piecewise continuous multi-element Galerkin expansion. The weak form

augmented by newly derived penalty terms has all desirable properties for this particular class of

problems: symmetry, positivity and very low sensitivity to underlying mesh and the polynomial

degree of finite element basis. The original penalty parameter introduced in HDG acts rather as

a method selector with limited effect on iterative convergence and accuracy. The weak boundary235

algorithm inherits this characteristic and the positivity of τ leads to a well-posed problem and its

efficient discretization. This contrasts with Nitsche’s method, where the failure to properly scale

the penalty term yields an ill-defined problem.

Our future work will focus on application of weak boundary conditions in more challenging set

ups featuring more complex geometries and turbulent flows.240
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