139 research outputs found

    Trends in microfluidic systems for in situ chemical analysis of natural waters

    Get PDF
    Spatially and temporally detailed measurement of ocean, river and lake chemistry is key to fully understanding the biogeochemical processes at work within them. To obtain these valuable data, miniaturised in situ chemical analysers have recently become an attractive alternative to traditional manual sampling, with microfluidic technology at the forefront of recent advances. In this short critical review we discuss the role, operation and application of in situ microfluidic analysers to measure biogeochemical parameters in natural waters. We describe recent technical developments, most notably how pumping technology has evolved to allow long-term deployments, and describe how they have been deployed in real-world situations to yield detailed, scientifically useful data. Finally, we discuss the technical challenges that still remain and the key obstacles that must be negotiated if these promising systems are to be widely adopted and used, for example, in large environmental sensor networks and on low-power underwater vehicles

    Spatial variability in Antarctic surface snow bacterial communities

    Get PDF
    It was once a long-held view that the Antarctic was a pristine environment with low biomass, low biodiversity and low rates of microbial activity. However, as the intensity of scientific investigation has increased, so these views have started to change. In particular, the role and impact of human activity toward indigenous microbial communities has started to come under more intense scrutiny. During the Subglacial Lake Ellsworth exploration campaign in December 2012, a microbiological survey was conducted to determine the extent and likelihood of exogenous input into the subglacial lake system during the hot-water drilling process. Snow was collected from the surface to represent that used for melt water production for hot-water drilling. The results of this study showed that snow used to provide melt water differed in its microbiological composition from that of the surrounding area and raised the question of how the biogeography of snow-borne microorganisms might influence the potential outcome of scientific analyses. In this study, we investigated the biogeography of microorganisms in snow around a series of Antarctic logistic hubs, where human activity was clearly apparent, and from which scientific investigations have been undertaken. A change in microbial community structure with geographical location was apparent and, notably, a decrease in alpha diversity at more remote southern latitudes. Soil-related microorganisms dominated microbial assemblages suggesting terrestrial input, most likely from long-range aeolian transport into continental Antarctica. We also observed that relic DNA was not a major issue when assessing snow samples. Overall, our observations might have profound implications for future scientific activities in Antarctica, such as the need to establish ā€œno-goā€ protected areas, the need for better characterization of field sites and improved protocols for sterilization and verification of ice drilling equipment

    Science-Policy Briefing Paper and Event 1

    Get PDF
    The first briefing paper summarizing work being carried-out in AtlantOS. The outcome will be presented to the stakeholders in a briefing even

    Early warning device for detection of pollutants in water

    Get PDF
    Due to a growing need to protect water resources from contamination, there is a requirement for the development of more reliable and cost effective devices for water quality monitoring. The aim of the AQUAWARN project is to develop and deploy a fully autonomous water quality monitoring device that can measure nitrite, nitrate, phosphate and pH colorimetrically in fresh water and wastewater, and communicate the information to stakeholders in real time

    Early warning pollution detection device for application in water quality

    Get PDF
    It has been well recognised that water is a valuable resource and the quality of our water systems require sampling at a higher temporal and spatial frequency than is currently taking place. The AQUAWARN project aims to meet this challenge through the development of commercially competitive water quality monitoring devices. These will be capable of performing analytical measurements in situ - primarily aimed at freshwater and wastewater systems. The analytes of interest are mainly phosphate, nitrite, nitrate, and pH. The initial focus of this project is the assessment and optimisation of appropriate colorimetric chemistries for each sensing target. These chemistries have been developed and optimised using bench-top instrumentation. Integration within microfluidic chips followed to reduce the per sample costs. Microfluidic technology uses minute amounts of reagent per sample measurement, allowing for a dramatic increase in the number of potential assays per unit volume of reagent. Moreover, the integration of LEDs and photodiodes as light sources and detectors, coupled with syringe pumps, opens the way to new generations of low-cost, portable, and autonomous devices, capable of performing multiple in-situ measurements.Ā  For example, an analysis requiring 50 uL of reagent implies 2,000 measurements are possible per 100 mL of reagent

    Procedures to Improve Sensor Data Quality

    Get PDF
    The oceans play an important role in aspects of global sustainability, including climate change, food security and human health. Because of its vast dimensions, internal complexity, and limited accessibility, efficient monitoring and predicting of the ocean forms a collaborative effort of regional and global scale. A key requirement for ocean observing is the need to follow well-defined approaches. Summarized under ā€œOcean Best Practicesā€ (OBP) are all aspects of ocean observing that require proper and agreed-on documentation, from manuals and standard operating procedures for sensors, strategies for structuring observing systems and associated products, to ethical and governance aspects when executing ocean observing. In Task 6.2 we have developed new tools, and organized workshops with outcomes of Best Practice manuals and scientific publications. The focus has been on improving accuracy of trace element measurements in seawater and also of marine omics analysis, and enhancing reliability, interoperability and quality of sensor measurements for dissolved oxygen, nutrients and carbonate chemistry measurements

    Microbiology: lessons from a first attempt at Lake Ellsworth

    Get PDF
    During the attempt to directly access, measure and sample Subglacial Lake Ellsworth in 2012ā€“2013, we conducted microbiological analyses of the drilling equipment, scientific instrumentation, field camp and natural surroundings. From these studies, a number of lessons can be learned about the cleanliness of deep Antarctic subglacial lake access leading to, in particular, knowledge of the limitations of some of the most basic relevant microbiological principles. Here, we focus on five of the core challenges faced and describe how cleanliness and sterilization were implemented in the field. In the light of our field experiences, we consider how effective these actions were, and what can be learnt for future subglacial exploration missions. The five areas covered are: (i) field camp environment and activities, (ii) the engineering processes surrounding the hot water drilling, (iii) sample handling, including recovery, stability and preservation, (iv) clean access methodologies and removal of sample material, and (v) the biodiversity and distribution of bacteria around the Antarctic. Comparisons are made between the microbiology of the Lake Ellsworth field site and other Antarctic systems, including the lakes on Signy Island, and on the Antarctic Peninsula at Lake Hodgson. Ongoing research to better define and characterize the behaviour of natural and introduced microbial populations in response to deep-ice drilling is also discussed. We recommend that future access programmes: (i) assess each specific local environment in enhanced detail due to the potential for local contamination, (ii) consider the sterility of the access in more detail, specifically focusing on single cell colonization and the introduction of new species through contamination of pre-existing microbial communities, (iii) consider experimental bias in methodological approaches, (iv) undertake in situ biodiversity detection to mitigate risk of non-sample return and post-sample contamination, and (v) address the critical question of how important these microbes are in the functioning of Antarctic ecosystems

    Clean subglacial access:Prospects for future deep hot-water drilling

    Get PDF
    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets.</p

    Quantification of a subsea CO2 release with lab-on-chip sensors measuring benthic gradients

    Get PDF
    We present a novel approach to detecting and quantifying a subsea release of CO2 from within North Sea sedļæ½iments, which mimicked a leak from a subsea CO2 reservoir. Autonomous lab-on-chip sensors performed in situ measurements of pH at two heights above the seafloor. During the 11 day experiment the rate of CO2 release was gradually increased. Whenever the currents carried the CO2-enriched water towards the sensors, the sensors measured a decrease in pH, with a strong vertical gradient within a metre of the seafloor. At the highest release rate, a decrease of over 0.6 pH units was observed 17 cm above the seafloor compared to background meaļæ½surements. The sensor data was combined with hydrodynamic measurements to quantify the amount of CO2 escaping the sediments using an advective mass transport model. On average, we directly detected 43 Ā± 8% of the released CO2 in the water column. Accounting for the incomplete carbonate equilibration process increases this estimate to up to 61 Ā± 10%. This technique can provide long-term in situ monitoring of offshore CO2 resļæ½ervoirs and hence provides a tool to support climate change mitigation activities. It could also be applied to characterising plumes and quantifying other natural or anthropogenic fluxes of dissolved solutes
    • ā€¦
    corecore