26 research outputs found

    Relationship between cerebrospinal fluid neurodegeneration biomarkers and temporal brain atrophy in cognitively healthy older adults

    Get PDF
    It is unclear whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration predict brain atrophy in cognitively healthy older adults, whether these associations can be explained by phosphorylated tau181 (p-tau) and the 42 amino acid form of amyloid-êžµ (Aêžµ42) biomarkers, and which neural substrates may drive these associations. We addressed these questions in two samples of cognitively healthy older adults who underwent longitudinal structural MRI up to 7 years and had baseline CSF levels of heart-type fatty-acid binding protein [FABP3], total-tau, neurogranin, and neurofilament light [NFL] (n=189, scans=721). The results showed that NFL, total-tau, and FABP3 predicted entorhinal thinning and hippocampal atrophy. Brain atrophy was not moderated by Aêžµ42 and the associations between NFL and FABP3 with brain atrophy were independent of p-tau. The spatial pattern of cortical atrophy associated with the biomarkers overlapped with neurogenetic profiles associated with expression in the axonal (total-tau, NFL) and dendritic (neurogranin) components. CSF biomarkers of neurodegeneration are useful for predicting specific features of brain atrophy in older adults, independently of amyloid and tau pathology biomarkers

    The association between stress and mood across the adult lifespan on default mode network

    Get PDF
    Aging of brain structure and function is a complex process characterized by high inter- and intra-individual variability. Such variability may arise from the interaction of multiple factors, including exposure to stressful experience and mood variation, across the lifespan. Using a multimodal neuroimaging and neurocognitive approach, we investigated the association of stress, mood and their interaction, in the structure and function of the default mode network (DMN), both during rest and task-induced deactivation, throughout the adult lifespan. Data confirmed a decreased functional connectivity (FC) and task-induced deactivation of the DMN during the aging process and in subjects with lower mood; on the contrary, an increased FC was observed in subjects with higher perceived stress. Surprisingly, the association of aging with DMN was altered by stress and mood in specific regions. An increased difficulty to deactivate the DMN was noted in older participants with lower mood, contrasting with an increased deactivation in individuals presenting high stress, independently of their mood levels, with aging. Interestingly, this constant interaction across aging was globally most significant in the combination of high stress levels with a more depressed mood state, both during resting state and task-induced deactivations. The present results contribute to characterize the spectrum of FC and deactivation patterns of the DMN, highlighting the crucial association of stress and mood levels, during the adult aging process. These combinatorial approaches may help to understand the heterogeneity of the aging process in brain structure and function and several states that may lead to neuropsychiatric disorders.The work was supported by SwitchBox-FP7-HEALTH-2010-Grant 259772-2 and by ON.2, O NOVO NORTE, North Portugal Regional Operational Programme 2007/2013, of the National strategic Reference Framework (NSRF) 2007/2013, through the European Regional Development Fund (ERDF)info:eu-repo/semantics/publishedVersio

    Het nemen van beslissingen door volwassenen met ADHD:Een systematisch literatuuronderzoek

    Get PDF
    Personen met aandachtstekortstoornis met hyperactiviteit (ADHD) hebben een grotere kans om minder goede (levens)beslissingen te nemen en om risicovolle activiteiten te ondernemen dan personen zonder ADHD. Mogelijk komt dit doordat de kenmerken van ADHD van invloed zijn op het besluitvormingsproces. Hoewel beslissingsproblematiek reeds uitgebreid is onderzocht bij kinderen en adolescenten met ADHD, is er nog relatief weinig bekend over de besluitvorming van volwassenen met ADHD. Om die reden was het doel van dit literatuuronderzoek de aard en omvang van eventuele tekorten in het besluitvormingsproces van volwassenen met ADHD vast te stellen. Hiertoe is de bestaande literatuur, waarin de prestatie van volwassenen met ADHD op beslissingstaken werd vergeleken met de prestatie van een gezonde controlegroep, systematisch doorzocht, waartoe de databases PsycINFO, MEDLINE en PubMed zijn geraadpleegd. In totaal werden er 31 studies geïncludeerd. In de meerderheid van de studies (i.e. 55 %) weken de prestaties van volwassenen met ADHD af op een of meer van de gebruikte beslissingstaken in vergelijking met de controlegroep(en). Dit literatuuronderzoek levert daarmee voorzichtig bewijs voor het bestaan van verschillen in het besluitvormingsproces tussen gezonde individuen en volwassenen met ADHD. De grote inconsistentie in de bevindingen wordt deels verklaard door de verscheidenheid aan domeinen van besluitvorming die werden onderzocht, de comorbide stoornissen van de participanten en het medicatiegebruik in de ADHD-groepen. Het literatuuronderzoek besluit met een bespreking van de implicaties die de bevindingen hebben voor theorieën over de onderliggende mechanismen van ADHD

    Age and hippocampal volume predict distinct parts of default mode network activity

    Get PDF
    Group comparison studies have established that activity in the posterior part of the default-mode network (DMN) is down-regulated by both normal ageing and Alzheimer’s disease (AD). In this study linear regression models were used to disentangle distinctive DMN activity patterns that are more profoundly associated with either normal ageing or a structural marker of neurodegeneration. 312 datasets inclusive of healthy adults and patients were analysed. Days of life at scan (DOL) and hippocampal volume were used as predictors. Group comparisons confirmed a significant association between functional connectivity in the posterior cingulate/retrosplenial cortex and precuneus and both ageing and AD. Fully-corrected regression models revealed that DOL significantly predicted DMN strength in these regions. No such effect, however, was predicted by hippocampal volume. A significant positive association was found between hippocampal volumes and DMN connectivity in the right temporo-parietal junction (TPJ). These results indicate that postero-medial DMN down-regulation may not be specific to neurodegenerative processes but may be more an indication of brain vulnerability to degeneration. The DMN-TPJ disconnection is instead linked to the volumetric properties of the hippocampus, may reflect early-stage regional accumulation of pathology and might be of aid in the clinical detection of abnormal ageing

    Meta-analysis of generalized additive models in neuroimaging studies

    No full text
    Analyzing data from multiple neuroimaging studies has great potential in terms of increasing statistical power, enabling detection of effects of smaller magnitude than would be possible when analyzing each study separately and also allowing to systematically investigate between-study differences. Restrictions due to pri- vacy or proprietary data as well as more practical concerns can make it hard to share neuroimaging datasets, such that analyzing all data in a common location might be impractical or impossible. Meta-analytic methods provide a way to overcome this issue, by combining aggregated quantities like model parameters or risk ratios. Most meta-analytic tools focus on parametric statistical models, and methods for meta-analyzing semi-parametric models like generalized ad- ditive models have not been well developed. Parametric models are often not appropriate in neuroimaging, where for instance age-brain relationships may take forms that are difficult to accurately describe using such models. In this paper we introduce meta-GAM, a method for meta-analysis of generalized ad- ditive models which does not require individual participant data, and hence is suitable for increasing statistical power while upholding privacy and other regu- latory concerns. We extend previous works by enabling the analysis of multiple model terms as well as multivariate smooth functions. In addition, we show how meta-analytic p-values can be computed for smooth terms. The proposed methods are shown to perform well in simulation experiments, and are demon- strated in a real data analysis on hippocampal volume and self-reported sleep quality data from the Lifebrain consortium. We argue that application of meta- GAM is especially beneficial in lifespan neuroscience and imaging genetics. The methods are implemented in an accompanying R package metagam, which is also demonstrated

    No association between loneliness, episodic memory and hippocampal volume change in young and healthy older adults: a longitudinal European multicenter study

    No full text
    Background: Loneliness is most prevalent during adolescence and late life and has been associated with mental health disorders as well as with cognitive decline during aging. Associations between longitudinal measures of loneliness and verbal episodic memory and brain structure should thus be investigated. Methods: We sought to determine associations between loneliness and verbal episodic memory as well as loneliness and hippocampal volume trajectories across three longitudinal cohorts within the Lifebrain Consortium, including children, adolescents (N = 69, age range 10–15 at baseline examination) and older adults (N = 1468 over 60). We also explored putative loneliness correlates of cortical thinning across the entire cortical mantle. Results: Loneliness was associated with worsening of verbal episodic memory in one cohort of older adults. Specifically, reporting medium to high levels of loneliness over time was related to significantly increased memory loss at follow-up examinations. The significance of the loneliness-memory change association was lost when eight participants were excluded after having developed dementia in any of the subsequent follow-up assessments. No significant structural brain correlates of loneliness were found, neither hippocampal volume change nor cortical thinning. Conclusions: In the present longitudinal European multicenter study, the association between loneliness and episodic memory was mainly driven by individuals exhibiting progressive cognitive decline, which reinforces previous findings associating loneliness with cognitive impairment and dementia.</p

    Brain aging differs with cognitive ability regardless of education

    No full text
    Higher general cognitive ability (GCA) is associated with lower risk of neurodegenerative disorders, but neural mechanisms are unknown. GCA could be associated with more cortical tissue, from young age, i.e. brain reserve, or less cortical atrophy in adulthood, i.e. brain maintenance. Controlling for education, we investigated the relative association of GCA with reserve and maintenance of cortical volume, -area and -thickness through the adult lifespan, using multiple longitudinal cognitively healthy brain imaging cohorts (n = 3327, 7002 MRI scans, baseline age 20–88 years, followed-up for up to 11 years). There were widespread positive relationships between GCA and cortical characteristics (level-level associations). In select regions, higher baseline GCA was associated with less atrophy over time (level-change associations). Relationships remained when controlling for polygenic scores for both GCA and education. Our findings suggest that higher GCA is associated with cortical volumes by both brain reserve and -maintenance mechanisms through the adult lifespan.</p

    Brain aging differs with cognitive ability regardless of education

    Get PDF
    Higher general cognitive ability (GCA) is associated with lower risk of neurodegenerative disorders, but neural mechanisms are unknown. GCA could be associated with more cortical tissue, from young age, i.e. brain reserve, or less cortical atrophy in adulthood, i.e. brain maintenance. Controlling for education, we investigated the relative association of GCA with reserve and maintenance of cortical volume, -area and -thickness through the adult lifespan, using multiple longitudinal brain imaging cohorts (n = 3327, 7002 MRI scans, baseline age 20-88 years, followed-up up to 11 years). There were widespread positive relationships between GCA and cortical characteristics (level-level associations). In select regions, higher baseline GCA was associated with less atrophy over time (level-change associations). Relationships remained when controlling for polygenic scores for both GCA and education. Our findings suggest that higher GCA is associated with cortical volumes by both brain reserve and -maintenance mechanisms through the adult lifespan

    Brain aging differs with cognitive ability regardless of education

    No full text
    Higher general cognitive ability (GCA) is associated with lower risk of neurodegenerative disorders, but neural mechanisms are unknown. GCA could be associated with more cortical tissue, from young age, i.e. brain reserve, or less cortical atrophy in adulthood, i.e. brain maintenance. Controlling for education, we investigated the relative association of GCA with reserve and maintenance of cortical volume, -area and -thickness through the adult lifespan, using multiple longitudinal cognitively healthy brain imaging cohorts (n = 3327, 7002 MRI scans, baseline age 20-88 years, followed-up up to 11 years). There were widespread positive relationships between GCA and cortical characteristics (level-level associations). In select regions, higher baseline GCA was associated with less atrophy over time (level-change associations). Relationships remained when controlling for polygenic scores for both GCA and education. Our findings suggest that higher GCA is associated with cortical volumes by both brain reserve and -maintenance mechanisms through the adult lifespan

    People's interest in brain health testing: findings from an international, online cross-sectional survey

    Get PDF
    Brain health entails mental wellbeing and cognitive health in the absence of brain disorders. The past decade has seen an explosion of tests, cognitive and biological, to predict various brain conditions, such as Alzheimer's Disease. In line with these current developments, we investigated people's willingness and reasons to—or not to—take a hypothetical brain health test to learn about risk of developing a brain disease, in a cross-sectional multilanguage online survey. The survey was part of the Global Brain Health Survey, open to the public from 4th June 2019 to 31st August 2020. Respondents were largely recruited via European brain councils and research organizations. 27,590 people responded aged 18 years or older and were predominantly women (71%), middle-aged or older (>40 years; 83%), and highly educated (69%). Responses were analyzed to explore the relationship between demographic variables and responses. Results: We found high public interest in brain health testing: over 91% would definitely or probably take a brain health test and 86% would do so even if it gave information about a disease that cannot be treated or prevented. The main reason for taking a test was the ability to respond if one was found to be at risk of brain disease, such as changing lifestyle, seeking counseling or starting treatment. Higher interest in brain health testing was found in men, respondents with lower education levels and those with poor self-reported cognitive health. Conclusion: High public interest in brain health and brain health testing in certain segments of society, coupled with an increase of commercial tests entering the market, is likely to put pressure on public health systems to inform the public about brain health testing in years to come.</p
    corecore