142 research outputs found

    Genetic algorithm learning as a robust approach to RNA editing site prediction

    Get PDF
    BACKGROUND: RNA editing is one of several post-transcriptional modifications that may contribute to organismal complexity in the face of limited gene complement in a genome. One form, known as C → U editing, appears to exist in a wide range of organisms, but most instances of this form of RNA editing have been discovered serendipitously. With the large amount of genomic and transcriptomic data now available, a computational analysis could provide a more rapid means of identifying novel sites of C → U RNA editing. Previous efforts have had some success but also some limitations. We present a computational method for identifying C → U RNA editing sites in genomic sequences that is both robust and generalizable. We evaluate its potential use on the best data set available for these purposes: C → U editing sites in plant mitochondrial genomes. RESULTS: Our method is derived from a machine learning approach known as a genetic algorithm. REGAL (RNA Editing site prediction by Genetic Algorithm Learning) is 87% accurate when tested on three mitochondrial genomes, with an overall sensitivity of 82% and an overall specificity of 91%. REGAL's performance significantly improves on other ab initio approaches to predicting RNA editing sites in this data set. REGAL has a comparable sensitivity and higher specificity than approaches which rely on sequence homology, and it has the advantage that strong sequence conservation is not required for reliable prediction of edit sites. CONCLUSION: Our results suggest that ab initio methods can generate robust classifiers of putative edit sites, and we highlight the value of combinatorial approaches as embodied by genetic algorithms. We present REGAL as one approach with the potential to be generalized to other organisms exhibiting C → U RNA editing

    The intriguing evolutionary dynamics of plant mitochondrial DNA

    Get PDF
    The mitochondrial genome of plants is-in every respect and for yet unclear reasons-very different from the well-studied one of animals. Thanks to next-generation sequencing technologies, Davila et al. precisely characterized the role played by recombination and DNA repair in controlling mitochondrial variations in Arabidopsis thaliana, thus opening new perspectives on the long-term evolution of this intriguing genome

    Gene transfer: anything goes in plant mitochondria

    Get PDF
    Parasitic plants and their hosts have proven remarkably adept at exchanging fragments of mitochondrial DNA. Two recent studies provide important mechanistic insights into the pattern, process and consequences of horizontal gene transfer, demonstrating that genes can be transferred in large chunks and that gene conversion between foreign and native genes leads to intragenic mosaicism. A model involving duplicative horizontal gene transfer and differential gene conversion is proposed as a hitherto unrecognized source of genetic diversity

    Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Get PDF
    Background: Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results: In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)- PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions: This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests that transferred genes may be evolutionarily important in generating mitochondrial genetic diversity. Finally, the complex relationships within each lineage of transferred genes imply a surprisingly complicated history of these genes in Plantago subsequent to their acquisition via HGT and this history probably involves some combination of additional transfers (including intracellular transfer), gene duplication, differential loss and mutation-rate variation. Unravelling this history will probably require sequencing multiple mitochondrial and nuclear genomes from Plantago

    Are substitution rates and RNA editing correlated?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA editing is a post-transcriptional process that, in seed plants, involves a cytosine to uracil change in messenger RNA, causing the translated protein to differ from that predicted by the DNA sequence. RNA editing occurs extensively in plant mitochondria, but large differences in editing frequencies are found in some groups. The underlying processes responsible for the distribution of edited sites are largely unknown, but gene function, substitution rate, and gene conversion have been proposed to influence editing frequencies.</p> <p>Results</p> <p>We studied five mitochondrial genes in the monocot order Alismatales, all showing marked differences in editing frequencies among taxa. A general tendency to lose edited sites was observed in all taxa, but this tendency was particularly strong in two clades, with most of the edited sites lost in parallel in two different areas of the phylogeny. This pattern is observed in at least four of the five genes analyzed. Except in the groups that show an unusually low editing frequency, the rate of C-to-T changes in edited sites was not significantly higher that in non-edited 3<sup>rd </sup>codon positions. This may indicate that selection is not actively removing edited sites in nine of the 12 families of the core Alismatales. In all genes but <it>ccm</it>B, a significant correlation was found between frequency of change in edited sites and synonymous substitution rate. In general, taxa with higher substitution rates tend to have fewer edited sites, as indicated by the phylogenetically independent correlation analyses. The elimination of edited sites in groups that lack or have reduced levels of editing could be a result of gene conversion involving a cDNA copy (retroprocessing). If so, this phenomenon could be relatively common in the Alismatales, and may have affected some groups recurrently. Indirect evidence of retroprocessing without a necessary correlation with substitution rate was found mostly in families Alismataceae and Hydrocharitaceae (e.g., groups that suffered a rapid elimination of all their edited sites, without a change in substitution rate).</p> <p>Conclusions</p> <p>The effects of substitution rate, selection, and/or gene conversion on the dynamics of edited sites in plant mitochondria remain poorly understood. Although we found an inverse correlation between substitution rate and editing frequency, this correlation is partially obscured by gene retroprocessing in lineages that have lost most of their edited sites. The presence of processed paralogs in plant mitochondria deserves further study, since most evidence of their occurrence is circumstantial.</p

    Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes

    Get PDF
    Sequence analysis of organelle genomes and comprehensive analysis of C-to-U editing sites from flowering and non-flowering plants have provided extensive sequence information from diverse taxa. This study includes the first comprehensive analysis of RNA editing sites from a gymnosperm mitochondrial genome, and utilizes informatics analyses to determine conserved features in the RNA sequence context around editing sites. We have identified 565 editing sites in 21 full-length and 4 partial cDNAs of the 39 protein-coding genes identified from the mitochondrial genome of Cycas taitungensis. The information profiles and RNA sequence context of C-to-U editing sites in the Cycas genome exhibit similarity in the immediate flanking nucleotides. Relative entropy analyses indicate that similar regions in the 5′ flanking 20 nucleotides have information content compared to angiosperm mitochondrial genomes. These results suggest that evolutionary constraints exist on the nucleotide sequences immediately adjacent to C-to-U editing sites, and similar regions are utilized in editing site recognition

    Frequent, Geographically Structured Heteroplasmy in the Mitochondria of a Flowering Plant, Ribwort Plantain (Plantago lanceolata)

    Get PDF
    Recent research has convincingly documented cases of mitochondrial heteroplasmy in a small set of wild and cultivated plant species. Heteroplasmy is suspected to be common in flowering plants and investigations of additional taxa may help understand the mechanisms generating heteroplasmy as well as its effects on plant phenotypes. The role of mitochondrial heteroplasmy is of particular interest in plants as cytoplasmic male sterility is controlled by mitochondrial genotypes, sometimes leading to co-occurring female and hermaphroditic individuals (gynodioecy). Paternal leakage may be important in the evolution of mating systems in such populations. We conducted a genetic survey of the gynodioecious plant Plantago lanceolata, in which heteroplasmy has not previously been reported, and estimated the frequencies of mitochondrial genotypes and heteroplasmy. Sanger sequence genotyping of 179 individuals from 15 European populations for two polymorphic mitochondrial loci, atp6 and rps12, identified 15 heteroplasmic individuals. These were distributed among 6 of the 10 populations that had polymorphisms in the target loci and represented 8% of all sampled individuals and 15% of the individuals in those 6 populations. The incidence was highest in Northern England and Scotland. Our results are consistent with geographic differences in the incidence of paternal leakage and/or the rates of nuclear restoration of male fertility

    OrgConv: detection of gene conversion using consensus sequences and its application in plant mitochondrial and chloroplast homologs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ancestry of mitochondria and chloroplasts traces back to separate endosymbioses of once free-living bacteria. The highly reduced genomes of these two organelles therefore contain very distant homologs that only recently have been shown to recombine inside the mitochondrial genome. Detection of gene conversion between mitochondrial and chloroplast homologs was previously impossible due to the lack of suitable computer programs. Recently, I developed a novel method and have, for the first time, discovered recurrent gene conversion between chloroplast mitochondrial genes. The method will further our understanding of plant organellar genome evolution and help identify and remove gene regions with incongruent phylogenetic signals for several genes widely used in plant systematics. Here, I implement such a method that is available in a user friendly web interface.</p> <p>Results</p> <p><monospace>OrgConv</monospace> (<b>Org</b>anellar <b>Conv</b>ersion) is a computer package developed for detection of gene conversion between mitochondrial and chloroplast homologous genes. <monospace>OrgConv</monospace> is available in two forms; source code can be installed and run on a Linux platform and a web interface is available on multiple operating systems. The input files of the feature program are two multiple sequence alignments from different organellar compartments in FASTA format. The program compares every examined sequence against the consensus sequence of each sequence alignment rather than exhaustively examining every possible combination. Making use of consensus sequences significantly reduces the number of comparisons and therefore reduces overall computational time, which allows for analysis of very large datasets. Most importantly, with the significantly reduced number of comparisons, the statistical power remains high in the face of correction for multiple tests.</p> <p>Conclusions</p> <p>Both the source code and the web interface of <monospace>OrgConv</monospace> are available for free from the <monospace>OrgConv</monospace> website <url>http://www.indiana.edu/~orgconv</url>. Although <monospace>OrgConv</monospace> has been developed with main focus on detection of gene conversion between mitochondrial and chloroplast genes, it may also be used for detection of gene conversion between any two distinct groups of homologous sequences.</p

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    The Mitochondrial Genome of the Legume Vigna radiata and the Analysis of Recombination across Short Mitochondrial Repeats

    Get PDF
    The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38–297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes
    corecore