55 research outputs found

    Guardians of the epithelium: macrophages protect against toxic fungal derivatives

    Get PDF
    A recent paper in Cell proposes a new role for macrophages in the distal colonic mucosa, namely the generation of balloon-like processes (BLPs) that sample luminal contents and protect epithelial cells from the toxic effects of fungal metabolites absorbed during this process. Here Allan Mowat and Calum Bain discuss the implications of these novel findings for intestinal physiology and macrophage biology, highlighting how they extend our understanding of how tissue resident macrophages can adapt precisely to the physiological needs of individual anatomical niches

    Synthesis of 2-BMIDA 6,5-bicyclic heterocycles by Cu(I)/Pd(0)/Cu(II) cascade catalysis of 2-iodoaniline/phenols

    Get PDF
    A one-pot cascade reaction for the synthesis of 2-BMIDA 6,5-bicyclic heterocycles has been developed using Cu(I)/Pd(0)/Cu(II) catalysis. 2-Iodoanilines and phenols undergo a Cu(I)/Pd(0)-catalyzed Sonogashira reaction with ethynyl BMIDA followed by in situ Cu(II)-catalyzed 5-endo-dig cyclization to generate heterocyclic scaffolds with a BMIDA functional group in the 2-position. The method provides efficient access to borylated indoles, benzofurans, and aza-derivatives, which can be difficult to access through alternative methods

    Mechanisms of innate immune activation by gluten peptide p31-43 in mice

    Get PDF
    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. Innate immunity contributes to the pathogenesis of CD, but the mechanisms remain poorly understood. Although previous in vitro work suggests that gliadin peptide p31-43 acts as an innate immune trigger, the underlying pathways are unclear and have not been explored in vivo. Here we show that intraluminal delivery of p31-43 induces morphological changes in the small intestinal mucosa of normal mice consistent with those seen in CD, including increased cell death and expression of inflammatory mediators. The effects of p31-43 were dependent on MyD88 and type I IFNs, but not Toll-like receptor 4 (TLR4), and were enhanced by coadministration of the TLR3 agonist polyinosinic:polycytidylic acid. Together, these results indicate that gliadin peptide p31-43 activates the innate immune pathways in vivo, such as IFN-dependent inflammation, relevant to CD. Our findings also suggest a common mechanism for the potential interaction between dietary gluten and viral infections in the pathogenesis of CD.Instituto de Estudios Inmunológicos y Fisiopatológico

    Mechanisms of innate immune activation by gluten peptide p31-43 in mice

    Get PDF
    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. Innate immunity contributes to the pathogenesis of CD, but the mechanisms remain poorly understood. Although previous in vitro work suggests that gliadin peptide p31-43 acts as an innate immune trigger, the underlying pathways are unclear and have not been explored in vivo. Here we show that intraluminal delivery of p31-43 induces morphological changes in the small intestinal mucosa of normal mice consistent with those seen in CD, including increased cell death and expression of inflammatory mediators. The effects of p31-43 were dependent on MyD88 and type I IFNs, but not Toll-like receptor 4 (TLR4), and were enhanced by coadministration of the TLR3 agonist polyinosinic:polycytidylic acid. Together, these results indicate that gliadin peptide p31-43 activates the innate immune pathways in vivo, such as IFN-dependent inflammation, relevant to CD. Our findings also suggest a common mechanism for the potential interaction between dietary gluten and viral infections in the pathogenesis of CD

    Mucosal Macrophages in Intestinal Homeostasis and Inflammation

    Get PDF
    Intestinal macrophages are essential for local homeostasis and in keeping a balance between commensal microbiota and the host. However, they also play essential roles in inflammation and protective immunity, when they change from peaceful regulators to powerful aggressors. As a result, activated macrophages are important targets for treatment of inflammatory bowel diseases such as Crohn's disease. Until recently, the complexity and heterogeneity of intestinal macrophages have been underestimated and here we review current evidence that there are distinct populations of resident and inflammatory macrophages in the intestine. We describe the mechanisms that ensure macrophages remain partially inert in the healthy gut and cannot promote inflammation despite constant exposure to bacteria and other stimuli. This may be because the local environment ‘conditions’ macrophage precursors to become unresponsive after they arrive in the gut. Nevertheless, this permits some active, physiological functions to persist. A new population of pro-inflammatory macrophages appears in inflammation and we review the evidence that this involves recruitment of a distinct population of fully responsive monocytes, rather than alterations in the existing cells. A constant balance between these resident and inflammatory macrophages is critical for maintaining the status quo in healthy gut and ensuring protective immunity when required

    Identification and characterization of murine glycoprotein 2‐expressing intestinal dendritic cells

    Get PDF
    The intestinal lamina propria (LP) contains distinct subsets of classical dendritic cells (cDC), each playing key non-redundant roles in intestinal immune homeostasis. Here, we show that glycoprotein 2 (GP2), a GPI-anchored protein and receptor for bacterial type-I fimbriae, is selectively expressed by CD103+CD11b+ cDC in the murine small intestine (SI). GP2 expression was induced on CD103+CD11b+ cDC within the SI-LP and was regulated by IRF4, TGFβR1- and retinoic acid signalling. Mice selectively lacking Gp2 on CD103+CD11b+ cDC (huLang-Cre.gp2fl/fl mice) had normal numbers and proportions of innate and adaptive immune cells in the SI-LP suggesting that GP2 expression by CD103+CD11b+ cDC is not required for intestinal immune homoeostasis

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    Monocytes mediate Salmonella Typhimurium-induced tumor growth inhibition in a mouse melanoma model

    Get PDF
    The use of bacteria as an alternative cancer therapy has been reinvestigated in recent years. SL7207: an auxotrophic Salmonella enterica serovar Typhimurium aroA mutant with immune-stimulatory potential has proven a promising strain for this purpose. Here, we show that systemic administration of SL7207 induces melanoma tumor growth arrest in vivo, with greater survival of the SL7207-treated group compared to control PBS-treated mice. Administration of SL7207 is accompanied by a change in the immune phenotype of the tumor-infiltrating cells toward pro-inflammatory, with expression of the TH1 cytokines IFN-γ, TNF-α, and IL-12 significantly increased. Interestingly, Ly6C+MHCII+ monocytes were recruited to the tumors following SL7207 treatment and were pro-inflammatory. Accordingly, the abrogation of these infiltrating monocytes using clodronate liposomes prevented SL7207-induced tumor growth inhibition. These data demonstrate a previously unappreciated role for infiltrating inflammatory monocytes underlying bacterial-mediated tumor growth inhibition. This information highlights a possible novel role for monocytes in controlling tumor growth, contributing to our understanding of the immune responses required for successful immunotherapy of cancer

    The mannose receptor (CD206) identifies a population of colonic macrophages in health and inflammatory bowel disease

    Get PDF
    To understand the contribution of mononuclear phagocytes (MNP), which include monocyte-derived intestinal macrophages, to the pathogenesis of inflammatory bowel disease (IBD), it is necessary to identify functionally-different MNP populations. We aimed to characterise intestinal macrophage populations in patients with IBD. We developed 12-parameter flow cytometry protocols to identify and human intestinal MNPs. We used these protocols to purify and characterize colonic macrophages from colonic tissue from patients with Crohn’s disease (CD), ulcerative colitis (UC), or non-inflamed controls, in a cross-sectional study. We identify macrophage populations (CD45+CD64+ HLA-DR+) and describe two distinct subsets, differentiated by their expression of the mannose receptor, CD206. CD206+ macrophages expressed markers consistent with a mature phenotype: high levels of CD68 and CD163, higher transcription of IL-10 and lower expression of TREM1. CD206− macrophages appear to be less mature, with features more similar to their monocytic precursors. We identified and purified macrophage populations from human colon. These appear to be derived from a monocytic precursor with high CCR2 and low CD206 expression. As these cells mature, they acquire expression of IL-10, CD206, CD63, and CD168. Targeting the newly recruited monocyte-derived cells may represent a fruitful avenue to ameliorate chronic inflammation in IBD

    Barrier Tissue Macrophages: Functional Adaptation to Environmental Challenges

    Get PDF
    Macrophages are found throughout the body, where they have crucial roles in tissue development, homeostasis and remodeling, as well as being sentinels of the innate immune system that can contribute to protective immunity and inflammation. Barrier tissues, such as the intestine, lung, skin and liver, are exposed constantly to the outside world, which places special demands on resident cell populations such as macrophages. Here we review the mounting evidence that although macrophages in different barrier tissues may be derived from distinct progenitors, their highly specific properties are shaped by the local environment, which allows them to adapt precisely to the needs of their anatomical niche. We discuss the properties of macrophages in steady-state barrier tissues, outline the factors that shape their differentiation and behavior and describe how macrophages change during protective immunity and inflammation
    corecore