33 research outputs found
Modification of the levels of delta-aminolevulinic acid dehydratase in chronic alcoholic patients
Medical and biochemical analysis were performed on 58 patients with chronic alcoholism. In accordance with medical characterisation, patients were divided in three groups: A (patients having only hepatopathy), B (patients with hepatopathy and neuropathy) and C (patients having only alcoholic neuropathy). Simultaneously, several parameters related to heme biosynthesis were examined. Urinary delta-aminolevulic acid (ALA), porphobilinogen (PBG) and porphyrins and fecal porphyrins measurements did not show significant difference among all studied groups. The activities of ALA-dehydratase (ALA-D), uroporphyrinogen-I-synthase (URO-I-S) and uroporphyrinogen-III-synthase (URO-III-S) were monitored in peripheral erythrocytes. From the enzymes measured, only ALA-D levels in groups B and C were significantly depressed (p < 0.002) compared with normal subjects. The decrease in ALA-D correlated with the degree of neuropathy
Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles.
Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo₂ cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo₂ cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs
Towards a nanospecific approach for risk assessment.
In the current paper, a new strategy for risk assessment of nanomaterials is described, which builds upon
previous project outcomes and is developed within the FP7 NANoREG project. NANoREG has the aim to
develop, for the long term, new testing strategies adapted to a high number of nanomaterials where
many factors can affect their environmental and health impact. In the proposed risk assessment strategy,
approaches for (Quantitative) Structure Activity Relationships ((Q)SARs), grouping and read-across are
integrated and expanded to guide the user how to prioritise those nanomaterial applications that may
lead to high risks for human health. Furthermore, those aspects of exposure, kinetics and hazard
assessment that are most likely to be influenced by the nanospecific properties of the material under
assessment are identified. These aspects are summarised in six elements, which play a key role in the
strategy: exposure potential, dissolution, nanomaterial transformation, accumulation, genotoxicity and
immunotoxicity.
With the current approach it is possible to identify those situations where the use of nanospecific
grouping, read-across and (Q)SAR tools is likely to become feasible in the future, and to point towards the
generation of the type of data that is needed for scientific justification, which may lead to regulatory
acceptance of nanospecific applications of these tools.The research leading to these results has been partially funded
by the European Union Seventh Framework Programme (FP7/
2007e2013) under the project NANoREG (A common European
approach to the regulatory testing of nanomaterials), grant agreement
310584.info:eu-repo/semantics/publishedVersio
The Rise of Three Rs Centres and Platforms in Europe*
Public awareness and discussion about animal experiments and replacement methods has greatly increased in recent years. The term 'the Three Rs', which stands for the Replacement, Reduction and Refinement of animal experiments, is inseparably linked in this context. A common goal within the Three Rs scientific community is to develop predictive non-animal models and to better integrate all available data from in vitro, in silico and omics technologies into regulatory decision-making processes regarding, for example, the toxicity of chemicals, drugs or food ingredients. In addition, it is a general concern to implement (human) non-animal methods in basic research. Toward these efforts, there has been an ever-increasing number of Three Rs centres and platforms established over recent years - not only to develop novel methods, but also to disseminate knowledge and help to implement the Three Rs principles in policies and education. The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes gave a strong impetus to the creation of Three Rs initiatives, in the form of centres and platforms. As the first of a series of papers, this article gives an overview of the European Three Rs centres and platforms, and their historical development. The subsequent articles, to be published over the course of ATLA's 50th Anniversary year, will summarise the current focus and tasks as well as the future and the plans of the Three Rs centres and platforms. The Three Rs centres and platforms are very important points of contact and play an immense role in their respective countries as 'on the ground' facilitators of Directive 2010/63/EU. They are also invaluable for the widespread dissemination of information and for promoting implementation of the Three Rs in general
The Current Status and Work of Three Rs Centres and Platforms in Europe*
The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes has given a major push to the formation of Three Rs initiatives in the form of centres and platforms. These centres and platforms are dedicated to the so-called Three Rs, which are the Replacement, Reduction and Refinement of animal use in experiments. ATLA's 50th Anniversary year has seen the publication of two articles on European Three Rs centres and platforms. The first of these was about the progressive rise in their numbers and about their founding history; this second part focuses on their current status and activities. This article takes a closer look at their financial and organisational structures, describes their Three Rs focus and core activities (dissemination, education, implementation, scientific quality/translatability, ethics), and presents their areas of responsibility and projects in detail. This overview of the work and diverse structures of the Three Rs centres and platforms is not only intended to bring them closer to the reader, but also to provide role models and show examples of how such Three Rs centres and platforms could be made sustainable. The Three Rs centres and platforms are very important focal points and play an immense role as facilitators of Directive 2010/63/EU 'on the ground' in their respective countries. They are also invaluable for the wide dissemination of information and for promoting the implementation of the Three Rs in general
Modification of the levels of delta-aminolevulinic acid dehydratase in chronic alcoholic patients
Medical and biochemical analysis were performed on 58 patients with chronic alcoholism. In accordance with medical characterisation, patients were divided in three groups: A (patients having only hepatopathy), B (patients with hepatopathy and neuropathy) and C (patients having only alcoholic neuropathy). Simultaneously, several parameters related to heme biosynthesis were examined. Urinary delta-aminolevulic acid (ALA), porphobilinogen (PBG) and porphyrins and fecal porphyrins measurements did not show significant difference among all studied groups. The activities of ALA-dehydratase (ALA-D), uroporphyrinogen-I-synthase (URO-I-S) and uroporphyrinogen-III-synthase (URO-III-S) were monitored in peripheral erythrocytes. From the enzymes measured, only ALA-D levels in groups B and C were significantly depressed (p < 0.002) compared with normal subjects. The decrease in ALA-D correlated with the degree of neuropathy
Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles
Catherine A Schütz,1,* Davide Staedler,2,* Kieran Crosbie-Staunton,3 Dania Movia,4 Catherine Chapuis Bernasconi,1 Blanka Halamoda Kenzaoui,1 Adriele Prina-Mello,3,4 Lucienne Juillerat-Jeanneret11Centre Hospitalier Universitaire Vaudois (CHUV), UNIL, 2Institute of Chemical Sciences and Engineering, EPFL, CH-1015, Lausanne, Switzerland; 3School of Medicine, 4CRANN, Trinity College Dublin, Dublin, Ireland*These authors contributed equally to this workAbstract: Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo2 cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo2 cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs.Keywords: oleic acid, ultrasmall iron oxide nanoparticles, human colon cells, lipid vacuoles, stress reaction, heat shock protein
Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: From synthesis to proof-of-concept in vitro studies
The main objective of this study was to optimize and characterize a drug delivery carrier for doxorubicin, intended to be intravenously administered, capable of improving the therapeutic index of the chemotherapeutic agent itself, and aimed at the treatment of pancreatic cancer. In light of this goal, we report a robust one-step method for the synthesis of dicarboxylic acid-terminated polyethylene glycol (PEG)-gold nanoparticles (AuNPs) and doxorubicin-loaded PEG-AuNPs, and their further antibody targeting (anti-Kv11.1 polyclonal antibody [pAb]). In in vitro proof-of-concept studies, we evaluated the influence of the nanocarrier and of the active targeting functionality on the anti-tumor efficacy of doxorubicin, with respect to its half-maximal effective concentration (EC50) and drug-triggered changes in the cell cycle. Our results demonstrated that the therapeutic efficacy of doxorubicin was positively influenced not only by the active targeting exploited through anti-Kv11.1-pAb but also by the drug coupling with a nanometer-sized delivery system, which indeed resulted in a 30-fold decrease of doxorubicin EC50, cell cycle blockage, and drug localization in the cell nuclei. The cell internalization pathway was strongly influenced by the active targeting of the Kv11.1 subunit of the human Ether-?-go-go related gene 1 (hERG1) channel aberrantly expressed on the membrane of pancreatic cancer cells. Targeted PEG-AuNPs were translocated into the lysosomes and were associated to an increased lysosomal function in PANC-1 cells. Additionally, doxorubicin release into an aqueous environment was almost negligible after 7 days, suggesting that drug release from PEG-AuNPs was triggered by enzymatic activity. Although preliminary, data gathered from this study have considerable potential in the application of safe-by-design nano-enabled drug-delivery systems (ie, nanomedicines) for the treatment of pancreatic cancer, a disease with a poor prognosis and one of the main current burdens of today?s health care bill of industrialized countries
Cadmium nanoparticles citrullinate cytokeratins within lung epithelial cells: cadmium as a potential cause of citrullination in chronic obstructive pulmonary disease
David Hutchinson,1,2 Judith Müller,3 Joseph E McCarthy,4 Yurii K Gun’ko,4,5 Navin Kumar Verma,6 Xuezhi Bi,7 Luisana Di Cristo,8 Laura Kickham,8 Dania Movia,8 Adriele Prina-Mello,5,8 Yuri Volkov5,8,9 1Royal Cornwall Hospital NHS Trust, Treliske, 2University of Exeter Medical School Cornwall, UK; 3University of Basel, Basel, Switzerland; 4School of Chemistry, 5Advanced Materials for BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland; 6Lee Kong Chian School of Medicine, Nanyang Technological University, 7Bioprocessing Technology Institute, A*STAR Graduate Academy, Singapore; 8Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland; 9International Laboratory of Magnetically Controlled Nanosystems for Theranostics of Oncological and Cardiovascular Diseases, ITMO University, St. Petersburg, Russia Objective: The objective of the study was to determine whether the cadmium-derived materials induce intracellular protein citrullination. Methods: Human A549 lung epithelial cells were exposed to cadmium in soluble and nanoparticulate forms represented by cadmium chloride (CdCl2) and cadmium oxide (CdO), respectively, and their combinations with ultrafine carbon black (ufCB) produced by high temperature combustion, imitating cigarette burning. Protein citrullination in cell lysates was analyzed by Western immunoblotting and verified by immunofluorescent confocal microscopy. Target citrullinated proteins were identified by proteomic analysis. Results: CdO, ufCB and its combination with CdCl2 and CdO after high temperature combustion induced protein citrullination in cultured human lung epithelial cells, as detected by immunoblotting with anti-citrullinated protein antibody. Cytokeratins of type II (1, 2, 5, 6A, 6B and 77) and type I (9, 10) were identified as major intracellular citrullination targets. Immunofluorescent staining confirmed the localization of citrullinated proteins both in the cytoplasm and cell nuclei. Conclusion: Cadmium oxide nanoparticle exposure facilitated post-translational citrullination of proteins. Keywords: cadmium, COPD, nanoparticles, cytokeratins, citrullination, autoimmunity, proteomic